Abstract
Chitin is a representative microbe-associated molecular pattern (MAMP) molecule for various fungi and induces immune responses in many plant species. It has been clarified that the chitin signaling in rice requires a receptor kinase OsCERK1 and a receptor-like protein (Os)CEBiP, which specifically binds chitin oligosaccharides. On the other hand, Arabidopsis requires a receptor kinase (At)CERK1 for chitin signaling but it is not clear whether the plant also requires a CEBiP-like molecule for chitin perception/signaling. To clarify the similarity/difference of the chitin receptor in these two model plants, we first characterized CEBiP homologs in Arabidopsis. Only one of three CEBiP homologs, AtCEBiP (LYM2), showed a high-affinity binding for chitin oligosaccharides similar to rice CEBiP. AtCEBiP also represented the major chitin-binding protein in the Arabidopsis membrane. However, the single/triple knockout (KO) mutants of Arabidopsis CEBiP homologs and the overexpressor of AtCEBiP showed chitin-induced defense responses similar to wild-type Arabidopsis, indicating that AtCEBiP is biochemically functional as a chitin-binding protein but does not contribute to signaling. Studies of the chitin binding properties of the ectodomains of At/OsCERK1 and the chimeric receptors consisting of ecto/cytosolic domains of these molecules indicated that AtCERK1 is sufficient for chitin perception by itself.
Original language | English |
---|---|
Pages (from-to) | 1696-1706 |
Number of pages | 11 |
Journal | Plant and Cell Physiology |
Volume | 53 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2012 |
Externally published | Yes |
Keywords
- CEBiP
- CERK1
- Chitin
- MAMP
- Plant immunity
- Receptor
ASJC Scopus subject areas
- Physiology
- Plant Science
- Cell Biology