Abstract
We study the first-order Verwey transition in single-crystal Fe3O4 using high-resolution temperature-dependent (100-300 K) photoemission spectroscopy. The near-Fermi-level (EF) spectrum exhibits a clear gap of ∼70 meV in the occupied part of the density of states (DOS) in the low-temperature semiconducting phase. The gap is closed above the transition temperature TV=122 K, establishing a metal-semiconductor transition. The Fe 3d derived features arising from Fe3+ (eg2) majority- and Fe2+ (t2g1) minority-spin states responsible for the transition retain their character just above the transition but merge into a single feature by 300 K. Simultaneously, the DOS at EF increases systematically in the metallic phase. The results indicate the existence of, and a gradual change in, the short-range order for T>TV, which causes the nonmetalliclike electrical conductivity observed just above TV.
Original language | English |
---|---|
Pages (from-to) | 17976-17979 |
Number of pages | 4 |
Journal | Physical Review B |
Volume | 51 |
Issue number | 24 |
DOIs | |
Publication status | Published - 1995 |
Externally published | Yes |
ASJC Scopus subject areas
- Condensed Matter Physics