High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

Christopher S.A. Musgrave, Takehiro Murakami, Teruyuki Ugomori, Kensuke Yoshida, Shinsuke Fujioka, Hiroaki Nishimura, Hironori Atarashi, Tomokazu Iyoda, Keiji Nagai

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)


    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

    Original languageEnglish
    Article number033506
    JournalReview of Scientific Instruments
    Issue number3
    Publication statusPublished - Mar 1 2017

    ASJC Scopus subject areas

    • Instrumentation


    Dive into the research topics of 'High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas'. Together they form a unique fingerprint.

    Cite this