TY - JOUR
T1 - Identification and Characterization of High Molecular Weight Complexes Formed by Matrix AAA Proteases and Prohibitins in Mitochondria of Arabidopsis thaliana
AU - Piechota, Janusz
AU - Kolodziejczak, Marta
AU - Juszczak, Ilona
AU - Sakamoto, Wataru
AU - Janska, Hanna
PY - 2010/4/23
Y1 - 2010/4/23
N2 - We identify and characterize two matrix (m)-AAA proteases (AtFtsH3 and AtFtsH10) present in the mitochondria of Arabidopsis thaliana. AtFtsH3 is the predominant protease in leaves of wild type plants. Both proteases assemble with prohibitins (PHBs) into high molecular weight complexes (∼2 MDa), similarly to their yeast counterparts. A smaller PHB complex (∼1 MDa), without the m-AAA proteases, was also detected. Unlike in yeast, stable prohibitin- independent high molecular weight assemblies of m-AAA proteases could not be identified in A. thaliana. AtFtsH3 and AtFtsH10 form at least two types of m-AAA-PHB complexes in wild type plants. The one type contains PHBs and AtFtsH3, and the second one is composed of PHBs and both AtFtsH3 and AtFtsH10. Complexes composed of PHBs and AtFtsH10 were found in an Arabidopsis mutant lacking AtFtsH3 (ftsh3). Thus, both AtFtsH3 and AtFtsH10 may form hetero- and homo-oligomeric complexes with prohibitins. The increased level of AtFtsH10 observed in ftsh3 suggests that functions of the homo- and hetero-oligomeric complexes containing AtFtsH3 can be at least partially substituted by AtFtsH10 homo-oligomers. The steady-state level of the AtFtsH10 transcripts did not change in ftsh3 compared with wild type plants, but we found that almost twice more of the AtFtsH10 transcripts were associated with polysomes in ftsh3. Based on this result, we assume that the AtFtsH10 protein is synthesized at a higher rate in the ftsh3 mutant. Our results provide the first data on the composition of m-AAA and PHB complexes in plant mitochondria and suggest that the abundance ofm-AAA proteases is regulated not only at the transcriptional but also at the translational level.
AB - We identify and characterize two matrix (m)-AAA proteases (AtFtsH3 and AtFtsH10) present in the mitochondria of Arabidopsis thaliana. AtFtsH3 is the predominant protease in leaves of wild type plants. Both proteases assemble with prohibitins (PHBs) into high molecular weight complexes (∼2 MDa), similarly to their yeast counterparts. A smaller PHB complex (∼1 MDa), without the m-AAA proteases, was also detected. Unlike in yeast, stable prohibitin- independent high molecular weight assemblies of m-AAA proteases could not be identified in A. thaliana. AtFtsH3 and AtFtsH10 form at least two types of m-AAA-PHB complexes in wild type plants. The one type contains PHBs and AtFtsH3, and the second one is composed of PHBs and both AtFtsH3 and AtFtsH10. Complexes composed of PHBs and AtFtsH10 were found in an Arabidopsis mutant lacking AtFtsH3 (ftsh3). Thus, both AtFtsH3 and AtFtsH10 may form hetero- and homo-oligomeric complexes with prohibitins. The increased level of AtFtsH10 observed in ftsh3 suggests that functions of the homo- and hetero-oligomeric complexes containing AtFtsH3 can be at least partially substituted by AtFtsH10 homo-oligomers. The steady-state level of the AtFtsH10 transcripts did not change in ftsh3 compared with wild type plants, but we found that almost twice more of the AtFtsH10 transcripts were associated with polysomes in ftsh3. Based on this result, we assume that the AtFtsH10 protein is synthesized at a higher rate in the ftsh3 mutant. Our results provide the first data on the composition of m-AAA and PHB complexes in plant mitochondria and suggest that the abundance ofm-AAA proteases is regulated not only at the transcriptional but also at the translational level.
UR - http://www.scopus.com/inward/record.url?scp=77951246247&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951246247&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.063644
DO - 10.1074/jbc.M109.063644
M3 - Article
C2 - 20172857
AN - SCOPUS:77951246247
SN - 0021-9258
VL - 285
SP - 12512
EP - 12521
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -