TY - JOUR
T1 - Identification of the core domain and the secondary structure of the transcriptional coactivator MBF-1
AU - Ozaki, Jun
AU - Takemaru, Ken Ichi
AU - Ikegami, Takahisa
AU - Mishima, Masaki
AU - Ueda, Hitoshi
AU - Hirose, Susumu
AU - Kabe, Yasuaki
AU - Handa, Hiroshi
AU - Shirakawa, Masahiro
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1999
Y1 - 1999
N2 - Background: Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator necessary for transcriptional activation caused by DNA binding activators, such as FTZ-F1 and GCN4. MBF1 bridges the DNA-binding regions of these activators and the TATA-box binding protein (TBP), suggesting that MBF1 functions by recruiting TBP to promoters where the activators are bound. In addition, MBF1 stimulates DNA binding activities of the activators to their recognition sites. To date, little is known about structures of coactivators that bind to TBP. Results: The two-dimensional (2D) 1H-15N correlation spectrum of 15N labeled MBF1 indicated that MBF1 consists of both flexible and well structured parts. Limited digestion of MBF1 by α-chymotrypsin yielded a ~9 kDa fragment. N-terminal sequence analysis and NMR measurements revealed that this fragment originates from the C-terminal 80 residues of MBF1 and form a well structured C-terminal domain of MBF1, MBF1(CTD). As previous deletion analyses have shown that MBF1(CTD) is capable of binding to TBP, it is suggested that MBF1(CTD) is the TBP binding domain of MBF1. Sequential assignments have been obtained by means of three-dimensional (3D) and four dimensional (4D) heteronuclear correlation spectroscopies, and then the secondary structure of MBF1(CTD) was determined. As a result, MBF1(CTD) was shown to contain four amphipathic helices and a conserved C-terminal region. Asp106 which is assumed to be responsible for the binding to TBP is located at the hydrophilic side of the third helix. Conclusions: Structural analyses revealed that MBF1 consists of two structurally different domains. A N-terminal region is indispensable for the binding to activators, and does not form a well defined structure. In contrast, the C-terminal 80 residues, which is capable of binding to TBP by itself, form a well-structured domain, MBF1(CTD). MBF1(CTD) is made up of four amphipathic helices and a conserved C-terminal tail. A putative TBP binding residue is located on the hydrophilic surface of the third helix.
AB - Background: Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator necessary for transcriptional activation caused by DNA binding activators, such as FTZ-F1 and GCN4. MBF1 bridges the DNA-binding regions of these activators and the TATA-box binding protein (TBP), suggesting that MBF1 functions by recruiting TBP to promoters where the activators are bound. In addition, MBF1 stimulates DNA binding activities of the activators to their recognition sites. To date, little is known about structures of coactivators that bind to TBP. Results: The two-dimensional (2D) 1H-15N correlation spectrum of 15N labeled MBF1 indicated that MBF1 consists of both flexible and well structured parts. Limited digestion of MBF1 by α-chymotrypsin yielded a ~9 kDa fragment. N-terminal sequence analysis and NMR measurements revealed that this fragment originates from the C-terminal 80 residues of MBF1 and form a well structured C-terminal domain of MBF1, MBF1(CTD). As previous deletion analyses have shown that MBF1(CTD) is capable of binding to TBP, it is suggested that MBF1(CTD) is the TBP binding domain of MBF1. Sequential assignments have been obtained by means of three-dimensional (3D) and four dimensional (4D) heteronuclear correlation spectroscopies, and then the secondary structure of MBF1(CTD) was determined. As a result, MBF1(CTD) was shown to contain four amphipathic helices and a conserved C-terminal region. Asp106 which is assumed to be responsible for the binding to TBP is located at the hydrophilic side of the third helix. Conclusions: Structural analyses revealed that MBF1 consists of two structurally different domains. A N-terminal region is indispensable for the binding to activators, and does not form a well defined structure. In contrast, the C-terminal 80 residues, which is capable of binding to TBP by itself, form a well-structured domain, MBF1(CTD). MBF1(CTD) is made up of four amphipathic helices and a conserved C-terminal tail. A putative TBP binding residue is located on the hydrophilic surface of the third helix.
UR - http://www.scopus.com/inward/record.url?scp=0032803136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032803136&partnerID=8YFLogxK
U2 - 10.1046/j.1365-2443.1999.00267.x
DO - 10.1046/j.1365-2443.1999.00267.x
M3 - Article
C2 - 10469174
AN - SCOPUS:0032803136
SN - 1356-9597
VL - 4
SP - 415
EP - 424
JO - Genes to Cells
JF - Genes to Cells
IS - 7
ER -