Abstract
Acute cerebral ischemia induces membrane depolarization in the neuron, thereby incurring the simultaneous influx of various ions such as Na+ and Ca2+. Since procaine possesses the ability to inhibit the release of Ca2+ from intracellular Ca2+ stores to the cytosol as well as the ability to block Na+ channels, the effects of procaine on ischemia were investigated in the present study in gerbils both in vivo and in vitro. The histologic outcome was evaluated 7 days after 3 min of transient forebrain ischemia by assessing delayed neuronal death in hippocampal CA1 pyramidal cells in animals administered procaine (0.2, 0.4, or 2 μmol) intracerebroventricularly 10 min before ischemia and in animals given saline. The changes in the direct-current potential shift in the hippocampal CA1 area were measured using an identical animal model. A hypoxia-induced intracellular Ca2+ increase was evaluated by in vitro microfluorometry in gerbil hippocampal slices, and the effects of procaine (10, 50, and 100 μmol/l) on the Ca2+ accumulation were examined. Additionally, the effect of procaine (100 μmol/l) in a Ca2+-free condition was investigated. The histologic outcome was improved and the onset of the ischemia-induced membrane depolarization was prolonged by the preischemic administration of procaine. The increase in the intracellular concentration of Ca2+ induced by the in vitro hypoxia was suppressed by the perfusion of procaine- containing mediums (50 and 100 μmol/l), regarding both the initiation and the extent of the increase. A hypoxia-induced intracellular Ca2+ elevation in the Ca2+-free condition was observed, and the perfusion with procaine (100 μmol/l) inhibited this elevation. Procaine helps protect neurons from ischemia by suppressing the direct-current potential shift and by inhibiting the release of Ca2+ from the intracellular Ca2+ stores, as well as by inhibiting the influx of Ca2+ from the extracellular space.
Original language | English |
---|---|
Pages (from-to) | 16-23 |
Number of pages | 8 |
Journal | Brain Research |
Volume | 792 |
Issue number | 1 |
DOIs | |
Publication status | Published - May 4 1998 |
Externally published | Yes |
Keywords
- Anoxic depolarization
- Ca2
- Cerebral ischemia
- Gerbil
- Hippocampus
- Procaine
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Clinical Neurology
- Developmental Biology