Abstract
Lithium metal deposition during overcharge in practical lithium ion cells composed of a lithium metal oxide (LiCoO2) positive electrode coated on Al foil, carbon (synthesized graphite and hard carbon) negative electrodes coated on Cu foil, polypropylene separator, and liquid electrolyte was observed using in situ solid state 7Li nuclear magnetic resonance (NMR) measurements with an original probe featuring a flattened solenoid coil. Li insertion and extraction in carbon electrodes were monitored during charge and discharge and the intensities of certain peaks were found to be proportional to the cell capacity change. The deposition of metallic Li commenced after the cell voltage exceeded the nominal value and almost saturated after 160% of charge at a low current rate. The measurements showed that the deposition of metallic Li was much easier on graphite compared to hard carbon. The metallic Li deposited on hard carbon was almost completely discharged, whereas that on graphite remained after discharging to 2.5 V.
Original language | English |
---|---|
Pages (from-to) | A952-A958 |
Journal | Journal of the Electrochemical Society |
Volume | 162 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry