In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae

Hisao Moriya, Yuki Shimizu-Yoshida, Hiroaki Kitano

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

Intracellular biochemical parameters, such as the expression level of gene products, are considered to be optimized so that a biological system, including the parameters, works effectively. Those parameters should have some permissible range so that the systems have robustness against perturbations, such as noise in gene expression. However, little is known about the permissible range in real cells because there has been no experimental technique to test it. In this study, we developed a genetic screening method, named "genetic tug-of-war" (gTOW) that evaluates upper limit copy numbers of genes in a model eukaryote Saccharomyces cerevisiae, and we applied it for 30 cell-cycle related genes (CDC genes). The experiment provided unique quantitative data that could be used to argue the system-level properties of the cell cycle such as robustness and fragility. The data were used to evaluate the current computational model, and refinements to the model were suggested.

Original languageEnglish
Pages (from-to)1034-1045
Number of pages12
JournalPLoS genetics
Volume2
Issue number7
DOIs
Publication statusPublished - 2006
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this