Abstract
Graphene oxide (GO) contains graphitic single-layered sheets, while oxidized wood-based nanocarbon (oWNC) is composed of graphitic nanoshells. Since both materials are thoroughly oxidized with many oxygen-containing functional groups, both GOs and oWNCs form stable dispersions in water. We found that lubrication by dispersions of GOs and oWNCs in water resulted in very low friction coefficients below 0.04 with only slight plate surface wear using a steel plate and tungsten carbide ball. After lubrication, thick tribofilms are formed on the sliding surfaces, which would decrease the friction. In this study, in order to clarify the tribological mechanisms that result in such low friction coefficients, we have performed tribological tests and analyzed the tribofilms formed by dispersions of GO in water using confocal laser scanning microscopy (CLSM) with an optical data storage system, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The GO tribofilm is composed of many carbons and some oxygen, derived from the disordered and aggregated GO sheets. The GO tribofilm have higher hardness and hydrophilic properties than the steel plates, which would provide low friction and wear. It is found that both the GO tribofilm and GOs are necessary to achieve the lowest possible coefficient of friction. It is likely that the oWNC tribofilm has similar friction and wear decreasing effects to that of the GO dispersion.
Original language | English |
---|---|
Pages (from-to) | 235-241 |
Number of pages | 7 |
Journal | Tribology Online |
Volume | 11 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- AFM
- Graphene oxide
- Oxidized wood-based nanocarbon
- Tribofilm
- XPS
ASJC Scopus subject areas
- Surfaces, Coatings and Films