TY - JOUR
T1 - Iron enhances hepatitis C virus replication in cultured human hepatocytes
AU - Kakizaki, Satoru
AU - Takagi, Hitoshi
AU - Horiguchi, Norio
AU - Toyoda, Mitsuo
AU - Takayama, Hisashi
AU - Nagamine, Takeaki
AU - Mori, Masatomo
AU - Kato, Nobuyuki
PY - 2000
Y1 - 2000
N2 - Background: Iron overload in the presence of increasing concentrations of iron is one of the indicators of poor response to interferon therapy in chronic hepatitis C. In order to analyze the effect of iron on hepatitis C virus (HCV) replication, we measured replication in an HCV-infected cell line. Methods and Results: Cells from a non-neoplastic HCV-infected human hepatocyte line (PH5CH8) susceptible to HCV infection and supportive of HCV replication were used in this study. The replication of HCV RNA was measured by reverse transcription-nested polymerase chain reaction (RT-nested PCR). PH5CH8 cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. PH5CH8 cells were incubated with 0, 1, 10, 50, and 100 μM of FeSO4 at 37°C with 5% CO2. Forty-eight hours after iron supplementation, the quantity of HCV RNA in the cells incubated in 50 and 100 CIM of FeSO4 was approximately ten times that of the cells with no iron supplementation. Similar changes were observed beginning at 12 h from supplementation with FeSO4 and continued for at least 72 h after supplementation. MTT assay indicated that iron did not have cytotoxic effects on the PH5CH8 cells. Conclusion: Iron enhances HCV replication in a hepatocyte cell line. The results suggest that iron deposition in hepatocytes could facilitate HCV infection in the liver. (C) Munksgaard, 2000.
AB - Background: Iron overload in the presence of increasing concentrations of iron is one of the indicators of poor response to interferon therapy in chronic hepatitis C. In order to analyze the effect of iron on hepatitis C virus (HCV) replication, we measured replication in an HCV-infected cell line. Methods and Results: Cells from a non-neoplastic HCV-infected human hepatocyte line (PH5CH8) susceptible to HCV infection and supportive of HCV replication were used in this study. The replication of HCV RNA was measured by reverse transcription-nested polymerase chain reaction (RT-nested PCR). PH5CH8 cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. PH5CH8 cells were incubated with 0, 1, 10, 50, and 100 μM of FeSO4 at 37°C with 5% CO2. Forty-eight hours after iron supplementation, the quantity of HCV RNA in the cells incubated in 50 and 100 CIM of FeSO4 was approximately ten times that of the cells with no iron supplementation. Similar changes were observed beginning at 12 h from supplementation with FeSO4 and continued for at least 72 h after supplementation. MTT assay indicated that iron did not have cytotoxic effects on the PH5CH8 cells. Conclusion: Iron enhances HCV replication in a hepatocyte cell line. The results suggest that iron deposition in hepatocytes could facilitate HCV infection in the liver. (C) Munksgaard, 2000.
KW - Hepatitis C virus
KW - Iron
KW - PH5CH8
UR - http://www.scopus.com/inward/record.url?scp=0034087644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034087644&partnerID=8YFLogxK
U2 - 10.1034/j.1600-0676.2000.020002125.x
DO - 10.1034/j.1600-0676.2000.020002125.x
M3 - Article
C2 - 10847480
AN - SCOPUS:0034087644
SN - 0106-9543
VL - 20
SP - 125
EP - 128
JO - Liver
JF - Liver
IS - 2
ER -