TY - JOUR
T1 - L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model with upregulation of mitochondrial pathway
AU - Ishikawa, Hisashi
AU - Takaki, Akinobu
AU - Tsuzaki, Ryuichiro
AU - Yasunaka, Tetsuya
AU - Koike, Kazuko
AU - Shimomura, Yasuyuki
AU - Seki, Hiroyuki
AU - Matsushita, Hiroshi
AU - Miyake, Yasuhiro
AU - Ikeda, Fusao
AU - Shiraha, Hidenori
AU - Nouso, Kazuhiro
AU - Yamamoto, Kazuhide
PY - 2014/7/1
Y1 - 2014/7/1
N2 - Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% α-tocopherol (α-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although α-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis. Conclusion: L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial β-oxidation and redox system.
AB - Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% α-tocopherol (α-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although α-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis. Conclusion: L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial β-oxidation and redox system.
UR - http://www.scopus.com/inward/record.url?scp=84903697534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903697534&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0100627
DO - 10.1371/journal.pone.0100627
M3 - Article
C2 - 24983359
AN - SCOPUS:84903697534
SN - 1932-6203
VL - 9
JO - PLoS One
JF - PLoS One
IS - 7
M1 - e100627
ER -