Many-body interactions in Bi-based high-Tc cuprates studied by angle-resolved photoemission spectroscopy

T. Sato, H. Matsui, K. Terashima, T. Takahashi, H. Ding, H. B. Yang, S. C. Wang, T. Fujii, T. Watanabe, A. Matsuda, T. Terashima, K. Kadowaki

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Systematic angle-resolved photoemission spectroscopy (ARPES) has been performed on Bi2Sr2Can-1CunO 2n+4 (n=1-3). For n=2 and 3, the dispersion kink becomes pronounced on approaching (π, 0) below Tc, while a kink appears only around the nodal direction above Tc. This indicates that the coupling of electrons with magnetic resonance mode plays a dominant role in the superconducting state for multi-layered cuprates. Ultrahigh-resolution (ΔE=1.3 meV) ARPES result for n=2 indicates that spectra around (π, 0) below Tc is understood in terms of (1) the coupling of electrons with the resonance mode, (2) the real-space inhomogeneity, and (3) the impurity states in the vicinity of EF.

    Original languageEnglish
    Pages (from-to)628-631
    Number of pages4
    JournalJournal of Physics and Chemistry of Solids
    Volume67
    Issue number1-3
    DOIs
    Publication statusPublished - Jan 2006

    ASJC Scopus subject areas

    • General Chemistry
    • General Materials Science
    • Condensed Matter Physics

    Fingerprint

    Dive into the research topics of 'Many-body interactions in Bi-based high-Tc cuprates studied by angle-resolved photoemission spectroscopy'. Together they form a unique fingerprint.

    Cite this