Mechanical property and microstructure of bioactive organic-inorganic hybrids containing colloidal silica particles

Yasushi Aburatani, Kanji Tsuru, Satoshi Hayakawa, Akiyoshi Osaka

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Synthesized through sol-gel processing were Ormosil type hybrid gels containing varied mass fractions of colloidal silica, poly (dimethylsiloxane) (PDMS), tetraethoxysilane (TEOS) and calcium nitrate. Viscoelasticity, mechanical strength and 29Si MAS NMR spectra were measured, and in vitro apatite deposition in a simulated body fluid (SBF) of the Kokubo recipe was examined. The relative height of a Tg peak at about - 100°C in tan δ versus temperature curves grew with the colloidal silica content. This peak growth was accounted for the relative increase in PDMS-colloidal silica interactions. As the increase in the compressive strength followed the increase in colloidal silica content, the number of PDMS-silica bonds and hydrogen bond of colloidal silica increased due to the NMR spectra and tan δ curve. Thus, mechanical strength was dependent on PDMS-silica bonds and the hydrogen bond of colloidal silica. On the other hand, as the relative PDMS content increased, the number of PDMS-silica bonds was little influenced while PDMS chain structure increased. The gel (with a molar ratio TEOS:PDMS:H2O:HCl:Ca (NO3)2·4H2O = 1:0.48:5.0:0.9:0.10) containing 14 mass% colloidal silica (CS14P0.48Ca0.10) exhibited the highest maximum failure strain (about 70%) among all samples. Thus, the relative content of PDMS chain structure depending on PDMS content influenced the maximum failure strain. CS14P0.48Ca0.25 could not deposit apatite within 7 d after soaking in SBF, while PDMS/TEOS = 0.24 (molar ratio) could deposit apatite within 3 d. The increase in PDMS content restrained the dissolution of Ca ions.

Original languageEnglish
Pages (from-to)247-251
Number of pages5
JournalJournal of the Ceramic Society of Japan
Volume111
Issue number1292
DOIs
Publication statusPublished - Apr 2003

Keywords

  • Apatite
  • Bioactivity
  • Mechanical property
  • NMR
  • Sol-gel
  • Viscoelasticity

ASJC Scopus subject areas

  • Ceramics and Composites
  • Chemistry(all)
  • Condensed Matter Physics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Mechanical property and microstructure of bioactive organic-inorganic hybrids containing colloidal silica particles'. Together they form a unique fingerprint.

Cite this