TY - JOUR
T1 - Metamorphic reworking of a high pressure-low temperature mélange along the Motagua fault, Guatemala
T2 - A record of Neocomian and Maastrichtian transpressional tectonics
AU - Brueckner, Hannes K.
AU - Avé Lallemant, Hans G.
AU - Sisson, Virginia B.
AU - Harlow, George E.
AU - Hemming, Sidney R.
AU - Martens, Uwe
AU - Tsujimori, Tatsuki
AU - Sorensen, Sorena S.
N1 - Funding Information:
Subsequently, new oceanic crust was generated between the Chortís block and western Mexico as a result of rotation and left lateral translation along the Paleo-Motagua fault zone forming, in effect, a trans-extensional marginal basin that widened for much of the Cretaceous ( Francis, 2005 ). The existence of a basin that floored by younger crust is supported by the Early Cretaceous fossils found within the Santa Cruz and Juan de Paz ophiolites ( Muller, 1979; Rosenfeld, 1981 ) north of the Motagua fault. This new crust may or may not have been bordered by remnants of the older Farrallon plate. The evolution of this ocean system changed from spreading to contraction some time before the end of the Cretaceous culminating in the oblique collision at ca. 70 Ma of the southern end (present coordinates) of the Maya block or perhaps a sliver of this block, now called the Chuacús complex, with a southern terrane that presently has moved well to east of the position that Chortís block presently occupies across the Motagua fault. This shifted terrane presumably is now part of the Nicaraguan Rise or the Great Antilles Arc ( Martens et al., 2009 ).
PY - 2009/6/30
Y1 - 2009/6/30
N2 - The Guatemala suture zone is a major east-west left-lateral strike slip boundary that separates the North American and Caribbean plates in Guatemala. The Motagua fault, the central active strand of the suture zone, underwent two major collisional events within a system otherwise dominated by strike-slip motion. The first event is recorded by high-pressure/low temperature (HP/LT) eclogites and related rocks that occur within serpentinites both north and south of the Motagua fault. Lawsonite eclogites south of the fault are not significantly retrograded and give 40Ar/39Ar ages of 125-116 Ma and Sm-Nd mineral isochrons of 144-132 Ma. Eclogites north of the fault give similar Sm-Nd isochron ages (131-126 Ma) but otherwise differ in that they are strongly overprinted by a lower pressure assemblage and, along with associated HP/LT rocks, give much younger 40Ar/39Ar ages of 88-55 Ma indicating a later amphibolite facies metamorphic event. We propose therefore that all serpentinite hosted eclogites along the Motagua fault formed at essentially the same time in different parts of a laterally extensive Lower Cretaceous forearc subduction system, but subsequently underwent different histories. The southern assemblages were thrust southwards (present coordinates) immediately after HP metamorphism whereas the northern association was retrograded during a later collision that thrust it northward at ca. 70 Ma. They were subsequently juxtaposed opposite each other by major strike slip motion. This model implies that the HP rocks on opposing sides of the Motagua fault evolved along a plate boundary that underwent both dip slip and strike slip motion throughout the Late Cretaceous as a result of oblique convergence. The juxtaposition of a convergent and strike slip system means that HP/LT rocks within serpentinites can be found at depth along much of the modern Guatemala suture zone and its eastward extension into the northern Caribbean. Both sets of assemblages were exhumed relatively recently by the uplift of mountain ranges on both sides of the fault caused by movement along a restraining bend. Recent exhumation explains the apparently lack of offset of surface outcrops along a major strike slip fault.
AB - The Guatemala suture zone is a major east-west left-lateral strike slip boundary that separates the North American and Caribbean plates in Guatemala. The Motagua fault, the central active strand of the suture zone, underwent two major collisional events within a system otherwise dominated by strike-slip motion. The first event is recorded by high-pressure/low temperature (HP/LT) eclogites and related rocks that occur within serpentinites both north and south of the Motagua fault. Lawsonite eclogites south of the fault are not significantly retrograded and give 40Ar/39Ar ages of 125-116 Ma and Sm-Nd mineral isochrons of 144-132 Ma. Eclogites north of the fault give similar Sm-Nd isochron ages (131-126 Ma) but otherwise differ in that they are strongly overprinted by a lower pressure assemblage and, along with associated HP/LT rocks, give much younger 40Ar/39Ar ages of 88-55 Ma indicating a later amphibolite facies metamorphic event. We propose therefore that all serpentinite hosted eclogites along the Motagua fault formed at essentially the same time in different parts of a laterally extensive Lower Cretaceous forearc subduction system, but subsequently underwent different histories. The southern assemblages were thrust southwards (present coordinates) immediately after HP metamorphism whereas the northern association was retrograded during a later collision that thrust it northward at ca. 70 Ma. They were subsequently juxtaposed opposite each other by major strike slip motion. This model implies that the HP rocks on opposing sides of the Motagua fault evolved along a plate boundary that underwent both dip slip and strike slip motion throughout the Late Cretaceous as a result of oblique convergence. The juxtaposition of a convergent and strike slip system means that HP/LT rocks within serpentinites can be found at depth along much of the modern Guatemala suture zone and its eastward extension into the northern Caribbean. Both sets of assemblages were exhumed relatively recently by the uplift of mountain ranges on both sides of the fault caused by movement along a restraining bend. Recent exhumation explains the apparently lack of offset of surface outcrops along a major strike slip fault.
KW - HP/LT eclogites
KW - Sm-Nd geochronology
KW - oblique collisional tectonics
KW - strike-slip and subduction zone processes
UR - http://www.scopus.com/inward/record.url?scp=67449100652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67449100652&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2009.04.032
DO - 10.1016/j.epsl.2009.04.032
M3 - Article
AN - SCOPUS:67449100652
SN - 0012-821X
VL - 284
SP - 228
EP - 235
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
IS - 1-2
ER -