Microstructure-dependent hydrogen diffusion and trapping in high-tensile steel

Mitsuhiro Okayasu, Jun Motojima

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


In this work, the hydrogen embrittlement (HE) characteristics of high-tensile steel sheets with different microstructural characteristics were investigated. The sheets were fabricated via cold rolling (CR), water quenching (WQ), baking hardening (BH), and low-temperature annealing (LT), and their HE characteristics were clarified by examining the relationships between the microstructural characteristics and the severity of HE. Severe HE occurred in the WQ sample with hydrogen trapping at the boundaries of the retained austenite phases, resulting in intergranular and cleavage-like brittle failure. A reduction in HE was realized after the BH and LT processes. In these cases, hydrogen trapping was divided between the ε-carbide in the lattice spacings and at the boundaries of retained austenite, resulting in a mixed ductile/brittle failure mode. The extent of HE in the CR sample was similar to those in the BH and LT samples. However, the trapping sites were different; hydrogen trapping in the CR sample occurred in the slip band and around dislocations, resulting in delamination-like brittle failure on the slip planes. The extent of HE was also affected by the strain rate. More severe HE occurred in both the WQ and BH samples loaded slowly at 0.01 mm min−1 compared to the samples loaded 1.0 mm min−1 (i.e., intergranular failure). In this case, HE was affected by the large amount of hydrogen atoms trapped at the boundaries of the retained austenite phases. The hydrogen atoms in the lattice structure and ε-carbide migrated to the boundaries via dislocation movement. The extent of deterioration in tensile strength was two times higher in the samples loaded at the higher speed of 1.0 mm min−1 compared to those loaded at 0.01 mm min−1. Finally, the hydrogen trapping and failure mechanisms on the nano and atomic scales were discussed based on the results of the microstructural analyses.

Original languageEnglish
Article number139418
JournalMaterials Science and Engineering A
Publication statusPublished - Jul 14 2020


  • Carbide
  • High-tensile steel
  • Hydrogen diffusion
  • Hydrogen embrittlement
  • Hydrogen trapping
  • Lattice structure

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Microstructure-dependent hydrogen diffusion and trapping in high-tensile steel'. Together they form a unique fingerprint.

Cite this