Microvesicles isolated from bovine posterior pituitary accumulate norepinephrine

Yoshinori Moriyama, A. Yamamoto, H. Yamada, Y. Tashiro, K. I. Tomochika, M. Takahashi, M. Maeda, M. Futai

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)


Histochemical study indicated that the posterior pituitary possesses numerous microvesicles (MVs) containing synaptophysin, a marker protein specific for brain synaptic vesicles (Navone, F., Di Gioia, G., Jahn, R., Browning, M., Greengard, P. and De Camilli, P. (1989) J. Cell Biol. 109, 3425-2433). By monitoring cross-reactivity with anti-synaptophysin antibody, the MVs were highly purified from bovine posterior pituitaries by a combination of differential and sucrose density gradient centrifugations. The purified MVs had an average diameter of about 60 nm and were associated with synaptophysin as revealed by immunoelectron microscopy. The vesicles contained ATPase activity partially sensitive to bafilomycin A1 and to vanadate. The membrane fraction immunoisolated with anti-synaptophysin antibody also exhibited similar ATPase activity. The two ATPases could be purified separately; the vanadate-sensitive enzyme was identified as a 115- kDa polypeptide immunochemically similar to chromaffin granule P-ATPase (forming phosphoenzyme intermediate), and the bafilomycin A1-sensitive ATPase showed essentially the same properties as those of vacuolar type H+- ATPases. Upon addition of ATP, the MVs formed an electrochemical gradient of protons and took up norepinephrine in a reserpine-sensitive manner, indicating the presence of secondary monoamine transporter coupled with vacuolar type H+-ATPase. No uptake of L-glutamate, γ-aminobutyrate, glycine, or acetylcholine was observed. The identification of MVs as organelles responsible for storage of monoamines is important for understanding the physiological function of the posterior pituitary.

Original languageEnglish
Pages (from-to)11424-11429
Number of pages6
JournalJournal of Biological Chemistry
Issue number19
Publication statusPublished - 1995
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Microvesicles isolated from bovine posterior pituitary accumulate norepinephrine'. Together they form a unique fingerprint.

Cite this