Abstract
BACKGROUND: Poly-ether-ether-ketone (PEEK) has biomechanical and chemical properties that are excellent for biomedical applications; however, PEEK adhesion to bone or chondral tissue proceeds slowly due to poor hydrophilicity and other surface characteristics. OBJECTIVE: We investigated the structural change, hydrophilicity, and cytocompatibility of a PEEK surface after 172-nm xenon excimer UV-irradiation. METHODS: The surface characteristics before and after irradiation were evaluated by contact angle and ATR-FTIR measurements. Mouse osteoblast-like cells (MC3T3-E1) were cultured on PEEK plates and collected after 6, 12 and 24 h for cell adhesion analysis by crystal violet staining (CVS) and scanning electron microscopy (SEM). RESULTS: UV-irradiation improved PEEK surface hydrophilicity, as indicated by a significant drop in water contact angle (p<0.05). Irradiated PEEK showed additional peaks around 3370 cm-1 and 1720 cm-1, highlighting the generation of hydroxyl and carbonyl groups. CVS and SEM revealed improved adhesion to the PEEK surface after UV-irradiation. CONCLUSION: Our results suggest that 172-nm UV-irradiated PEEK may be used in biomedical applications that require good cell adhesion.
Original language | English |
---|---|
Pages (from-to) | 169-175 |
Number of pages | 7 |
Journal | Bio-Medical Materials and Engineering |
Volume | 25 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Poly(ether-ether-ketone)
- UV-irradiation
- cytocompatibility
ASJC Scopus subject areas
- Biomaterials
- Biomedical Engineering