Abstract
Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variableerature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.
Original language | English |
---|---|
Pages (from-to) | 1079-1083 |
Number of pages | 5 |
Journal | Nature Chemistry |
Volume | 6 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Chemistry(all)
- Chemical Engineering(all)