Musculoskeletal rehabilitation and bone. A novel approach to mechanotransduction using cell-adhesion-patterned cells

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Human vascular endothelial cells form the interface between the bloodstream and vessel walls and are continuously subjected to mechanical stimulation. When endothelial cells are stretched cyclically, along one axis, they align perpendicular to the axis of stretch. We previously reported that applying a cyclic, uni-axial strain to cells induced tyrosine phosphorylation of focal adhesion kinase and stimulated mitogen-activated protein kinase. However, it is difficult to quantify and analyze the spatial distribution of tyrosine phosphorylation in these cells, as they form focal adhesions randomly. Recently, we developed a system to overcome this problem by preparing individual, uniform, patterned cells that could be stretched cyclically and uni-axially. In this system we were able to statistically analyze cellular responses in these patterned cells, when subjected to a cyclic, uni-axial strain, using fluorescent microscopy.

Original languageEnglish
Pages (from-to)514-519
Number of pages6
JournalClinical calcium
Volume20
Issue number4
Publication statusPublished - Apr 2010

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Musculoskeletal rehabilitation and bone. A novel approach to mechanotransduction using cell-adhesion-patterned cells'. Together they form a unique fingerprint.

Cite this