Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface

Zichao Lian, Masanori Sakamoto, Hironori Matsunaga, Junie Jhon M. Vequizo, Akira Yamakata, Mitsutaka Haruta, Hiroki Kurata, Wataru Ota, Tohru Sato, Toshiharu Teranishi

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.

Original languageEnglish
Article number2314
JournalNature communications
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface'. Together they form a unique fingerprint.

Cite this