TY - JOUR
T1 - Neural Progenitor Cells Undergoing Yap/Tead-Mediated Enhanced Self-Renewal Form Heterotopias More Easily in the Diencephalon than in the Telencephalon
AU - Saito, Kanako
AU - Kawasoe, Ryotaro
AU - Sasaki, Hiroshi
AU - Kawaguchi, Ayano
AU - Miyata, Takaki
N1 - Funding Information:
Acknowledgements We thank Namiko Noguchi, Kumiko Ota, Maiko Kuroda and Makoto Masaoka for excellent technical assistance, and members of Miyata laboratory for discussion. This work was supported by MEXT KAKENHI 22111006 (T.M.), JSPS KAKENHI 16H02457 (T.M.), JSPS KAKENHI 16K06990 (A.K.) and Grant-in-Aid for JSPS Research Fellow (K.S.).
Publisher Copyright:
© 2017, The Author(s).
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Spatiotemporally ordered production of cells is essential for brain development. Normally, most undifferentiated neural progenitor cells (NPCs) face the apical (ventricular) surface of embryonic brain walls. Pathological detachment of NPCs from the apical surface and their invasion of outer neuronal territories, i.e., formation of NPC heterotopias, can disrupt the overall structure of the brain. Although NPC heterotopias have previously been observed in a variety of experimental contexts, the underlying mechanisms remain largely unknown. Yes-associated protein 1 (Yap1) and the TEA domain (Tead) proteins, which act downstream of Hippo signaling, enhance the stem-like characteristics of NPCs. Elevated expression of Yap1 or Tead in the neural tube (future spinal cord) induces massive NPC heterotopias, but Yap/Tead-induced expansion of NPCs in the developing brain has not been previously reported to produce NPC heterotopias. To determine whether NPC heterotopias occur in a regionally characteristic manner, we introduced the Yap1-S112A or Tead-VP16 into NPCs of the telencephalon and diencephalon, two neighboring but distinct forebrain regions, of embryonic day 10 mice by in utero electroporation, and compared NPC heterotopia formation. Although NPCs in both regions exhibited enhanced stem-like behaviors, heterotopias were larger and more frequent in the diencephalon than in the telencephalon. This result, the first example of Yap/Tead-induced NPC heterotopia in the forebrain, reveals that Yap/Tead-induced NPC heterotopia is not specific to the neural tube, and also suggests that this phenomenon depends on regional factors such as the three-dimensional geometry and assembly of these cells.
AB - Spatiotemporally ordered production of cells is essential for brain development. Normally, most undifferentiated neural progenitor cells (NPCs) face the apical (ventricular) surface of embryonic brain walls. Pathological detachment of NPCs from the apical surface and their invasion of outer neuronal territories, i.e., formation of NPC heterotopias, can disrupt the overall structure of the brain. Although NPC heterotopias have previously been observed in a variety of experimental contexts, the underlying mechanisms remain largely unknown. Yes-associated protein 1 (Yap1) and the TEA domain (Tead) proteins, which act downstream of Hippo signaling, enhance the stem-like characteristics of NPCs. Elevated expression of Yap1 or Tead in the neural tube (future spinal cord) induces massive NPC heterotopias, but Yap/Tead-induced expansion of NPCs in the developing brain has not been previously reported to produce NPC heterotopias. To determine whether NPC heterotopias occur in a regionally characteristic manner, we introduced the Yap1-S112A or Tead-VP16 into NPCs of the telencephalon and diencephalon, two neighboring but distinct forebrain regions, of embryonic day 10 mice by in utero electroporation, and compared NPC heterotopia formation. Although NPCs in both regions exhibited enhanced stem-like behaviors, heterotopias were larger and more frequent in the diencephalon than in the telencephalon. This result, the first example of Yap/Tead-induced NPC heterotopia in the forebrain, reveals that Yap/Tead-induced NPC heterotopia is not specific to the neural tube, and also suggests that this phenomenon depends on regional factors such as the three-dimensional geometry and assembly of these cells.
KW - Heterotopia
KW - Neural progenitor cells
KW - Self-renewal
KW - Tead
KW - Ventricular zone
KW - Yap
UR - http://www.scopus.com/inward/record.url?scp=85028803276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028803276&partnerID=8YFLogxK
U2 - 10.1007/s11064-017-2390-x
DO - 10.1007/s11064-017-2390-x
M3 - Article
C2 - 28879493
AN - SCOPUS:85028803276
SN - 0364-3190
VL - 43
SP - 171
EP - 180
JO - Neurochemical Research
JF - Neurochemical Research
IS - 1
ER -