Numerical Simulation on Coupling Current for Multifilamentary HTS Wire

T. Koizumi, E. Morikawa, S. B. Kim, H. Ueda

Research output: Contribution to journalConference articlepeer-review

Abstract

Since a high temperature superconducting (HTS) wire such as Bi-2223 (Bi2Sr2Ca2Cu3O) and REBCO((RE)Ba2Cu3O) tapes indicates good superconducting characteristics under high magnetic field, ultra-high field magnets wound HTS wire are applicable to a nuclear magnetic resonance (NMR) spectrometer and magnetic resonance imaging (MRI). The large and long-time-constant screening current is induced in the HTS wire, which is the tape shape and not twisted, and the magnetic field generated by screening current deteriorated the field quality such as temporal stability and spatial homogeneity. Because NMR and MRI requires highly accurate field on temporal stability and spatial homogeneity, it is necessary to investigate the influence of the screening current-induced field. In REBCO tape, the screening current can be reduced by dividing the superconductor layer. However, filaments are electrically connected because they are covered with copper due to strength and thermal stability. On the other hand, a Bi-2223 is wire which multiple superconducting filaments are covered with silver or a silver alloy, therefore, the screening current is smaller than that in a REBCO tape. However, in a Bi-2223 tape, a coupling current flows because of electrical bridge between the filaments. In this study, we discuss coupling current distribution from numerical simulation on the multifilamentary HTS coil which is given the local electrical contact between filaments. The screening-current field decreases with increasing the interval distance. In addition, the current distribution is different depending on the interval distance.

Original languageEnglish
Article number012039
JournalJournal of Physics: Conference Series
Volume1054
Issue number1
DOIs
Publication statusPublished - Jul 26 2018
Event30th International Symposium on Superconductivity, ISS 2017 - Tokyo, Japan
Duration: Dec 13 2017Dec 15 2017

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Numerical Simulation on Coupling Current for Multifilamentary HTS Wire'. Together they form a unique fingerprint.

Cite this