Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling

E. Cannaò, M. Scambelluri, G. E. Bebout, S. Agostini, T. Pettke, M. Godard, L. Crispini

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


The chemical and physical processes operating during subduction-zone metamorphism can profoundly influence the cycling of elements on Earth. Deep-Earth carbon (C) cycling and mobility in subduction zones has been of particular recent interest to the scientific community. Here, we present textural and geochemical data (C[sbnd]O, Sr isotopes and bulk and in-situ trace element concentrations) for a suite of ophicarbonate rocks (carbonate-bearing serpentinites) metamorphosed over a range of peak pressure-temperature (P-T) conditions together representing a prograde subduction zone P-T path. These rocks, in order of increasing peak P-T conditions, are the Internal Liguride ophicarbonates (from the Bracco unit, N. Apennines), pumpellyite- and blueschist-facies ophicarbonates from the Sestri-Voltaggio zone (W. Ligurian Alps) and the Queyras (W. Alps), respectively, and eclogite-facies ophicarbonates from the Voltri Massif. The Bracco oceanic ophicarbonates retain breccia-like textures associated with their seafloor hydrothermal and sedimentary origins. Their trace element concentrations and δ18OVSMOW (+15.6 to +18.2‰), δ13CVPDB (+1.1 to +2.5‰) and their 87Sr/86Sr (0.7058 to 0.7068), appear to reflect equilibration during Jurassic seawater-rock interactions. Intense shear deformation characterizes the more deeply subducted ophicarbonates, in which prominent calcite recrystallization and carbonation of serpentinite clasts occurred. The isotopic compositions of the pumpellyite-facies ophicarbonates overlap those of their oceanic equivalents whereas the most deformed blueschist-facies sample shows enrichments in radiogenic Sr (87Sr/86Sr = 0.7075) and depletion in 13C (with δ13C as low as −2.0‰). These differing textural and geochemical features for the two suites reflect interaction with fluids in closed and open systems, respectively. The higher-P-metamorphosed ophicarbonates show strong shear textures, with coexisting antigorite and dolomite, carbonate veins crosscutting prograde antigorite foliation and, in some cases, relics of magnesite-nodules enclosed in the foliation. These rocks are characterized by lower δ18O (+10.3 to 13.0‰), enrichment in radiogenic Sr (87Sr/86Sr up to 0.7096) and enrichment in incompatible and fluid-mobile element (FME; e.g., As, Sb, Pb). These data seemingly reflect interaction with externally-derived metamorphic fluids and the infiltrating fluids likely were derived from dehydrating serpentinites with hybrid serpentinite-sediment compositions. The interaction between these two lithologies could have occurred prior to or after dehydration of the serpentinites elsewhere. We suggest that decarbonation and dissolution/precipitation processes operating in ancient subduction zones, and resulting in the mobilization of C, are best traced by a combination of detailed field and petrographic observations, C, O and Sr isotope systematics (i.e., 3D isotopes), and FME inventories. Demonstration of such processes is key to advancing our understanding of the influence of subduction zone metamorphism on the mobilization of C in subducting reservoirs and the efficiency of delivery of this C to depths beneath volcanic arcs and into the deeper mantle.

Original languageEnglish
Article number119626
JournalChemical Geology
Publication statusPublished - Jul 20 2020
Externally publishedYes


  • C-O-Sr isotopes
  • Deep carbon cycle
  • High-pressure ophicarbonates
  • Oceanic ophicarbonates
  • Subduction zone

ASJC Scopus subject areas

  • Geology
  • Geochemistry and Petrology


Dive into the research topics of 'Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling'. Together they form a unique fingerprint.

Cite this