TY - GEN
T1 - Optimization of nozzle flushing method for smooth debris exclusion in wire EDM
AU - Fujimoto, Takuya
AU - Okada, Akira
AU - Okamoto, Yasuhiro
AU - Uno, Yoshiyuki
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - In a wire EDM using a thin wire electrode, better exclusion of debris from the machined kerf is important in order to maintain stable machining performance, since the area of spark generation is along a line and very small. When large amounts of debris stagnate in the gap, secondary discharges possibly occur and these discharges easily concentrate on the same location, which leads to unstable machining performance, wire breakage, low machining rate and a low shape accuracy. Conventionally, the exclusion of debris is carried out by jet flushing with an upper and lower nozzle. However, the flow field of machining fluid in the kerf due to the jet flushing and the effect of jet flushing conditions from the nozzles on debris exclusion have not yet been sufficiently examined. This study aims to clarify the flow field in the machined kerf by computational fluid dynamics (CFD) and to propose new jet flushing methods for smooth debris exclusion in the wire EDM. The effects of workpiece thickness and machined kerf length on the flow field of working fluid in the kerf under conventional jet flushing conditions are discussed. Then, jet flushing with a tilting nozzle is proposed in order to decrease the debris stagnation area near the wire electrode. As a result, by using the tilting nozzle, removal rate can be improved because of the smooth debris exclusion.
AB - In a wire EDM using a thin wire electrode, better exclusion of debris from the machined kerf is important in order to maintain stable machining performance, since the area of spark generation is along a line and very small. When large amounts of debris stagnate in the gap, secondary discharges possibly occur and these discharges easily concentrate on the same location, which leads to unstable machining performance, wire breakage, low machining rate and a low shape accuracy. Conventionally, the exclusion of debris is carried out by jet flushing with an upper and lower nozzle. However, the flow field of machining fluid in the kerf due to the jet flushing and the effect of jet flushing conditions from the nozzles on debris exclusion have not yet been sufficiently examined. This study aims to clarify the flow field in the machined kerf by computational fluid dynamics (CFD) and to propose new jet flushing methods for smooth debris exclusion in the wire EDM. The effects of workpiece thickness and machined kerf length on the flow field of working fluid in the kerf under conventional jet flushing conditions are discussed. Then, jet flushing with a tilting nozzle is proposed in order to decrease the debris stagnation area near the wire electrode. As a result, by using the tilting nozzle, removal rate can be improved because of the smooth debris exclusion.
KW - CFD
KW - Debris exclusion
KW - Flow field
KW - Jet flushing
KW - Wire Edm
UR - http://www.scopus.com/inward/record.url?scp=84862733189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862733189&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/KEM.516.73
DO - 10.4028/www.scientific.net/KEM.516.73
M3 - Conference contribution
AN - SCOPUS:84862733189
SN - 9783037854280
T3 - Key Engineering Materials
SP - 73
EP - 78
BT - Proceedings of Precision Engineering and Nanotechnology
PB - Trans Tech Publications Ltd
T2 - 4th International Conference of Asian Society for Precision Engineering and Nanotechnology, ASPEN 2011
Y2 - 16 November 2011 through 18 November 2011
ER -