TY - GEN
T1 - Optimization of token holding times in split light trail networks
AU - Chen, Wenjie
AU - Fukushima, Yukinobu
AU - Yokohira, Tokumi
PY - 2011
Y1 - 2011
N2 - As a new optical WDM network architecture that can be built with currently available devices and can achieve bandwidth allocation with granularity finer than a wavelength, a light trail architecture attracts attention. Because a light trail is a shared medium, we need a medium access control (MAC) protocol to avoid collisions. Although MAC protocols using token passing can avoid collisions, bandwidths of links that locate upstream of the token holding node are kept idle. In this paper, we first propose a dynamic light trail splitting method in order to increase throughput of a light trail by using those idle bandwidths. Our method splits a trail into the upstream trail and the downstream trail at the token holding node and independent data transmissions on the two trails are permitted. As a result, we expect that the split trail architecture achieves higher maximum throughput than the original non-split trail architecture. The degree of throughput improvement by the split trail architecture depends on how appropriately we set upstream and downstream token holding times of every transmission node. Thus, we formulate a problem to decide the token holding times as a nonlinear programming problem, derive the maximum throughput of the split trail architecture by solving the problem using NUOPT solver, and investigate the degree of improvement compared to the original architecture. According to numerical examples, the split trail architecture achieves 1) almost the same maximum throughput as the original one for its unfavorite traffic pattern where every transmission node sends data to the terminating node of the trail only, 2) about 1.6 times as high maximum throughput for a uniform traffic pattern where every node-pair requests the same traffic volume, and 3) about 1.9 time as high maximum throughput for its favorite traffic pattern where every transmission node sends data to its adjacent downstream node only.
AB - As a new optical WDM network architecture that can be built with currently available devices and can achieve bandwidth allocation with granularity finer than a wavelength, a light trail architecture attracts attention. Because a light trail is a shared medium, we need a medium access control (MAC) protocol to avoid collisions. Although MAC protocols using token passing can avoid collisions, bandwidths of links that locate upstream of the token holding node are kept idle. In this paper, we first propose a dynamic light trail splitting method in order to increase throughput of a light trail by using those idle bandwidths. Our method splits a trail into the upstream trail and the downstream trail at the token holding node and independent data transmissions on the two trails are permitted. As a result, we expect that the split trail architecture achieves higher maximum throughput than the original non-split trail architecture. The degree of throughput improvement by the split trail architecture depends on how appropriately we set upstream and downstream token holding times of every transmission node. Thus, we formulate a problem to decide the token holding times as a nonlinear programming problem, derive the maximum throughput of the split trail architecture by solving the problem using NUOPT solver, and investigate the degree of improvement compared to the original architecture. According to numerical examples, the split trail architecture achieves 1) almost the same maximum throughput as the original one for its unfavorite traffic pattern where every transmission node sends data to the terminating node of the trail only, 2) about 1.6 times as high maximum throughput for a uniform traffic pattern where every node-pair requests the same traffic volume, and 3) about 1.9 time as high maximum throughput for its favorite traffic pattern where every transmission node sends data to its adjacent downstream node only.
UR - http://www.scopus.com/inward/record.url?scp=84863183654&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863183654&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2011.6133810
DO - 10.1109/GLOCOM.2011.6133810
M3 - Conference contribution
AN - SCOPUS:84863183654
SN - 9781424492688
T3 - GLOBECOM - IEEE Global Telecommunications Conference
BT - 2011 IEEE Global Telecommunications Conference, GLOBECOM 2011
T2 - 54th Annual IEEE Global Telecommunications Conference: "Energizing Global Communications", GLOBECOM 2011
Y2 - 5 December 2011 through 9 December 2011
ER -