TY - JOUR
T1 - Origin of the superconducting state in the collapsed tetragonal phase of KFe2 As2
AU - Guterding, Daniel
AU - Backes, Steffen
AU - Jeschke, Harald O.
AU - Valentí, Roser
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/4/13
Y1 - 2015/4/13
N2 - Recently, KFe2 As2 was shown to exhibit a structural phase transition from a tetragonal to a collapsed tetragonal phase under an applied pressure of about 15 GPa. Surprisingly, the collapsed tetragonal phase hosts a superconducting state with Tc ∼ 12 K, while the tetragonal phase is a Tc ≤ 3.4 K superconductor. We show that the key difference between the previously known nonsuperconducting collapsed tetragonal phase in AFe2 As2 (A = Ba, Ca, Eu, Sr) and the superconducting collapsed tetragonal phase in KFe2 As2 is the qualitatively distinct electronic structure. While the collapsed phase in the former compounds features only electron pockets at the Brillouin zone boundary and no hole pockets are present in the Brillouin zone center, the collapsed phase in KFe2 As2 has almost nested electron and hole pockets. Within a random phase approximation spin fluctuation approach we calculate the superconducting order parameter in the collapsed tetragonal phase. We propose that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d wave (tetragonal) to s± (collapsed tetragonal). Our density functional theory combined with dynamical mean-field theory calculations show that effects of correlations on the electronic structure of the collapsed tetragonal phase are minimal. Finally, we argue that our results are compatible with a change of sign of the Hall coefficient with pressure, as observed experimentally.
AB - Recently, KFe2 As2 was shown to exhibit a structural phase transition from a tetragonal to a collapsed tetragonal phase under an applied pressure of about 15 GPa. Surprisingly, the collapsed tetragonal phase hosts a superconducting state with Tc ∼ 12 K, while the tetragonal phase is a Tc ≤ 3.4 K superconductor. We show that the key difference between the previously known nonsuperconducting collapsed tetragonal phase in AFe2 As2 (A = Ba, Ca, Eu, Sr) and the superconducting collapsed tetragonal phase in KFe2 As2 is the qualitatively distinct electronic structure. While the collapsed phase in the former compounds features only electron pockets at the Brillouin zone boundary and no hole pockets are present in the Brillouin zone center, the collapsed phase in KFe2 As2 has almost nested electron and hole pockets. Within a random phase approximation spin fluctuation approach we calculate the superconducting order parameter in the collapsed tetragonal phase. We propose that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d wave (tetragonal) to s± (collapsed tetragonal). Our density functional theory combined with dynamical mean-field theory calculations show that effects of correlations on the electronic structure of the collapsed tetragonal phase are minimal. Finally, we argue that our results are compatible with a change of sign of the Hall coefficient with pressure, as observed experimentally.
UR - http://www.scopus.com/inward/record.url?scp=84928967130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928967130&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.91.140503
DO - 10.1103/PhysRevB.91.140503
M3 - Article
AN - SCOPUS:84928967130
SN - 1098-0121
VL - 91
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 14
M1 - 140503
ER -