OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice

Natsuko I. Kobayashi, Naoki Yamaji, Hiroki Yamamoto, Kaoru Okubo, Hiroki Ueno, Alex Costa, Keitaro Tanoi, Hideo Matsumura, Miho Fujii-Kashino, Tomoki Horiuchi, Mohammad Al Nayef, Sergey Shabala, Gynheung An, Jian Feng Ma, Tomoaki Horie

Research output: Contribution to journalArticlepeer-review

162 Citations (Scopus)

Abstract

Salt tolerance quantitative trait loci analysis of rice has revealed that the SKC1 locus, which is involved in a higher K+/Na+ ratio in shoots, corresponds to the OsHKT1;5 gene encoding a Na+-selective transporter. However, physiological roles of OsHKT1;5 in rice exposed to salt stress remain elusive, and no OsHKT1;5 gene disruption mutants have been characterized to date. In this study, we dissected two independent T-DNA insertional OsHKT1;5 mutants. Measurements of ion contents in tissues and 22Na+ tracer imaging experiments showed that loss-of-function of OsHKT1;5 in salt-stressed rice roots triggers massive Na+ accumulation in shoots. Salt stress-induced increases in the OsHKT1;5 transcript were observed in roots and basal stems, including basal nodes. Immuno-staining using an anti-OsHKT1;5 peptide antibody indicated that OsHKT1;5 is localized in cells adjacent to the xylem in roots. Additionally, direct introduction of 22Na+ tracer to leaf sheaths also demonstrated the involvement of OsHKT1;5 in xylem Na+ unloading in leaf sheaths. Furthermore, OsHKT1;5 was indicated to be present in the plasma membrane and found to localize also in the phloem of diffuse vascular bundles in basal nodes. Together with the characteristic 22Na+ allocation in the blade of the developing immature leaf in the mutants, these results suggest a novel function of OsHKT1;5 in mediating Na+ exclusion in the phloem to prevent Na+ transfer to young leaf blades. Our findings further demonstrate that the function of OsHKT1;5 is crucial over growth stages of rice, including the protection of the next generation seeds as well as of vital leaf blades under salt stress.

Original languageEnglish
Pages (from-to)657-670
Number of pages14
JournalPlant Journal
Volume91
Issue number4
DOIs
Publication statusPublished - Aug 2017

Keywords

  • HKT
  • Na exclusion
  • Oryza sativa
  • phloem
  • salt tolerance
  • xylem

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice'. Together they form a unique fingerprint.

Cite this