Abstract
We previously described a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In ND-GFP mice, nascent blood vessels are labeled with GFP. We report here that osteosarcoma cells promote angiogenesis in the Gelfoam® angiogenesis assay in ND-GFP mice. Gelfoam® was initially transplanted subcutaneously in the flank of transgenic ND-GFP nude mice. Seven days after transplantation of Gelfoam®, skin flaps were made and human 143B osteosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in cytoplasm were injected into the transplanted Gelfoam®. The control-group mice had only implanted Gelfoam®. Skin flaps were made at days 14, 21, and 28 after transplantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small animal imaging system and confocal fluorescence microscopy. ND-GFP expressing nascent blood vessels penetrated and spread into the Gelfoam® in a time-dependent manner in both control and osteosarcoma-implanted mice. ND-GFP expressing blood vessels in the Gelfoam® of the osteosarcoma-implanted mice were associated with the cancer cells and larger and longer than in the Gelfoam®-only implanted mice (P<0.01). The results presented in this report demonstrate strong angiogenesis induction by osteosarcoma cells and suggest this process is a potential therapeutic target for this disease. J. Cell. Biochem. 115: 1490-1494, 2014.
Original language | English |
---|---|
Pages (from-to) | 1490-1494 |
Number of pages | 5 |
Journal | Journal of Cellular Biochemistry |
Volume | 115 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2014 |
Externally published | Yes |
Keywords
- ANGIOGENESIS
- CONFOCAL MICROSCOPY
- GELFOAM®
- GREEN FLUORESCENT PROTEIN
- NESTIN
- OSTEOSARCOMA
- RED FLUORESCENT PROTEIN
- TRANSGENIC NUDE MOUSE
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology