TY - JOUR
T1 - Phenotyping of isogenic chlorophyll-less bread and durum wheat mutant lines in relation to photoprotection and photosynthetic capacity
AU - Zivcak, Marek
AU - Brestic, Marian
AU - Botyanszka, Lenka
AU - Chen, Yang Er
AU - Allakhverdiev, Suleyman I.
N1 - Funding Information:
Acknowledgements This work was supported by the projects VEGA-1-0923-16, VEGA-1-0831-17, and APVV-15-0721. SIA was supported by grants from the Russian Foundation for Basic Research (No: 17-04-01289). We thank Prof. N. Watanabe, College of Agriculture, Ibaraki University, Inashiki, Japan, for providing the seeds of the mutants and their characteristics. We also thank our former colleague Kristina Kunderlikova for her participation in the measurements.
Publisher Copyright:
© 2018, Springer Nature B.V.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - In our experiments, we examined high light responses and photosynthetic capacity of chlorophyll-less isogenic mutant lines of hexaploid bread wheat (Triticum aestivum L.) and tetraploid durum wheat (Triticum durum L.) in comparison to parental lines representing the wild type (WT), in two growth phases and two environments. In young plants, we observed a typical yellow-green phenotype with low chlorophyll content, significantly lower CO 2 assimilation rate, elevated chlorophyll a-to-b ratio and insufficient regulation of linear electron transport. In the mutants grown in a moderate light in the growth chamber, a typical “chlorina” phenotype almost disappeared or, at least, was significantly alleviated in later growth stages, including the values of CO 2 assimilation and the majority of the measured parameters related to photoprotective responses. On the other hand, in the case of the mutant lines grown in direct sunlight and fluctuating environment, the chlorophyll-less phenotype was evident also in latter growth phases. The chlorophyll-less phenotype was more severe in the durum wheat mutant lines compared to the bread wheat. For example, the durum wheat mutant lines grown outdoors expressed lower flexibility of photoprotective responses, including lower non-photochemical quenching and low rate of cyclic electron flow compared to WT or bread wheat mutants. Based on the analyses, we have identified a set of parameters providing information on the specific photosynthetic traits typical for the chlorophyll-less phenotype. Thus, the proposed way of phenotyping may serve for efficient selection of mutant genotypes for future research or screening activities. As a general result, we observed that the decrease of the chlorophyll content due to mutation was always associated with improper regulation of linear electron transport and a limited ability to prevent over-reduction of PSI acceptor side, regardless of the genotype, environment, and growth stage. This can partly explain why the low chlorophyll mutants were not successful in the evolution of higher plants, despite the photosynthetic capacity observed is high enough and they are fully competitive with wild-type plants in non-fluctuating controlled environment.
AB - In our experiments, we examined high light responses and photosynthetic capacity of chlorophyll-less isogenic mutant lines of hexaploid bread wheat (Triticum aestivum L.) and tetraploid durum wheat (Triticum durum L.) in comparison to parental lines representing the wild type (WT), in two growth phases and two environments. In young plants, we observed a typical yellow-green phenotype with low chlorophyll content, significantly lower CO 2 assimilation rate, elevated chlorophyll a-to-b ratio and insufficient regulation of linear electron transport. In the mutants grown in a moderate light in the growth chamber, a typical “chlorina” phenotype almost disappeared or, at least, was significantly alleviated in later growth stages, including the values of CO 2 assimilation and the majority of the measured parameters related to photoprotective responses. On the other hand, in the case of the mutant lines grown in direct sunlight and fluctuating environment, the chlorophyll-less phenotype was evident also in latter growth phases. The chlorophyll-less phenotype was more severe in the durum wheat mutant lines compared to the bread wheat. For example, the durum wheat mutant lines grown outdoors expressed lower flexibility of photoprotective responses, including lower non-photochemical quenching and low rate of cyclic electron flow compared to WT or bread wheat mutants. Based on the analyses, we have identified a set of parameters providing information on the specific photosynthetic traits typical for the chlorophyll-less phenotype. Thus, the proposed way of phenotyping may serve for efficient selection of mutant genotypes for future research or screening activities. As a general result, we observed that the decrease of the chlorophyll content due to mutation was always associated with improper regulation of linear electron transport and a limited ability to prevent over-reduction of PSI acceptor side, regardless of the genotype, environment, and growth stage. This can partly explain why the low chlorophyll mutants were not successful in the evolution of higher plants, despite the photosynthetic capacity observed is high enough and they are fully competitive with wild-type plants in non-fluctuating controlled environment.
KW - Bread wheat
KW - Chlorina
KW - Durum wheat
KW - Phenotyping
KW - Photoinhibition
KW - Photosystem I
UR - http://www.scopus.com/inward/record.url?scp=85049926590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049926590&partnerID=8YFLogxK
U2 - 10.1007/s11120-018-0559-z
DO - 10.1007/s11120-018-0559-z
M3 - Article
C2 - 30019176
AN - SCOPUS:85049926590
SN - 0166-8595
VL - 139
SP - 239
EP - 251
JO - Photosynthesis Research
JF - Photosynthesis Research
IS - 1-3
ER -