TY - JOUR
T1 - Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse
AU - Gaudin, J.
AU - Medvedev, N.
AU - Chalupský, J.
AU - Burian, T.
AU - Dastjani-Farahani, S.
AU - Hájková, V.
AU - Harmand, M.
AU - Jeschke, H. O.
AU - Juha, L.
AU - Jurek, M.
AU - Klinger, D.
AU - Krzywinski, J.
AU - Loch, R. A.
AU - Moeller, S.
AU - Nagasono, M.
AU - Ozkan, C.
AU - Saksl, K.
AU - Sinn, H.
AU - Sobierajski, R.
AU - Sovák, P.
AU - Toleikis, S.
AU - Tiedtke, K.
AU - Toufarová, M.
AU - Tschentscher, T.
AU - Vorlíček, V.
AU - Vyšín, L.
AU - Wabnitz, H.
AU - Ziaja, B.
PY - 2013/8/7
Y1 - 2013/8/7
N2 - We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.
AB - We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.
UR - http://www.scopus.com/inward/record.url?scp=84883345619&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883345619&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.88.060101
DO - 10.1103/PhysRevB.88.060101
M3 - Article
AN - SCOPUS:84883345619
SN - 1098-0121
VL - 88
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 6
M1 - 060101
ER -