Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2

Ya Feng, Qi Jiang, Baojie Feng, Meng Yang, Tao Xu, Wenjing Liu, Xiufu Yang, Masashi Arita, Eike F. Schwier, Kenya Shimada, Harald O. Jeschke, Ronny Thomale, Youguo Shi, Xianxin Wu, Shaozhu Xiao, Shan Qiao, Shaolong He

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics applications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi2. Due to its inversion asymmetry and reduced symmetry at the M point, Rashba-type as well as Dresselhaus-type SOC cooperatively yield a 3D spin splitting with αR ≈ 4.36 eV Å in PtBi2. The experimental realization of 3D Rashba-like spin splitting not only has fundamental interests but also paves the way to the future exploration of a new class of material with unprecedented functionalities for spintronics applications.

Original languageEnglish
Article number4765
JournalNature communications
Issue number1
Publication statusPublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2'. Together they form a unique fingerprint.

Cite this