Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures

Jung Fu Lin, Zhu Mao, Ignace Jarrige, Yuming Xiao, Paul Chow, Takuo Okuchi, Nozomu Hiraoka, Steven D. Jacobsen

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)


    Electronic states of iron in Earth's mantle minerals including ferropericlase, silicate perovskite, and post-perovskite have been previously investigated at high pressures and/or temperatures using various experimental techniques, including X-ray emission and Mössbauer spectroscopies. Although such methods have been used to infer changes in the electronic spin and valence states of iron in lower mantle minerals, they do not directly probe the 3d electronic states quantitatively. Here we use 1s2p resonant X-ray emission spectroscopy (RXES) at the Fe K pre-edge to directly probe and assess the 3d electronic states and the crystal-field splittings of Fe2+ in the lower-mantle ferropericlase [(Mg0.75,Fe0.25)O] at pressures up to 90 GPa. The pre-edge features from X-ray absorptionspectroscopy in the partial fluorescence yield (PFY-XAS) and RXES results explicitly show three excited states for high-spin Fe2+ (a lower-energy 4T1g state, a 4T2g state, and a higher-energy 4T1g state) and a single 2E g state for low-spin Fe2+, attributed to the (t 2g)0(eg)3 excited configuration. This latter feature begins to appear at 48 GPa and grows with pressure, while the peaks related to high-spin Fe2+ vanish above 80 GPa. The observed pre-edge features are consistent with purely quadrupolar transitions resultingfrom the centrosymmetric character of the Fe2+ site. The Kpre-edge RXES spectra at the incident energy of 7112 eV, which are similar to the Fe L-edge spectra, are also used successfully to quantitatively obtain consistent results on the spin transition of Fe2+ in ferropericlase under high pressures. Owing to the superior sensitivity of the RXES technique, the observed electronic states andtheir energy separations provide direct information on the local electronic structures and crystal-field splitting energies of the 3d electronic shells of Fe2+ in ferropericlase at relevant pressures of the Earth's lower mantle.

    Original languageEnglish
    Pages (from-to)1125-1131
    Number of pages7
    JournalAmerican Mineralogist
    Issue number8-9
    Publication statusPublished - 2010


    • Diamond anvil cell
    • Ferropericlase
    • High pressures
    • Partial fluorescence yield
    • Resonant X-rayemission spectroscopy
    • Spin transition

    ASJC Scopus subject areas

    • Geophysics
    • Geochemistry and Petrology


    Dive into the research topics of 'Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures'. Together they form a unique fingerprint.

    Cite this