TY - JOUR
T1 - Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195
T2 - Comparison with 11C-hydroxyephedrine and 123I-MIBG
AU - Werner, Rudolf A.
AU - Rischpler, Christoph
AU - Onthank, David
AU - Lapa, Constantin
AU - Robinson, Simon
AU - Samnick, Samuel
AU - Javadi, Mehrbod
AU - Schwaiger, Markus
AU - Nekolla, Stephan G.
AU - Higuchi, Takahiro
N1 - Publisher Copyright:
COPYRIGHT © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - 18F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (18F-LMI1195) is a new PET tracer designed for noninvasive assessment of sympathetic innervation of the heart. The 18F label facilitates the imaging advantages of PET over SPECT technology while allowing centralized manufacturing. Highly specific neural uptake of 18F-LMI1195 has previously been established, but the retention kinetics are not yet fully understood. Methods: Healthy New Zealand White rabbits were studied with 18F-LMI1195 using a small-animal PET system. Dynamic 40-min chest scans were started just before intravenous bolus injection of 18F-LMI1195. Imaging was performed under norepinephrine transport inhibition with desipramine pretreatment, a 1.5 mg/kg desipramine chase administered 10 min after tracer injection, and saline treatment of controls. As a reference, cardiac uptake of 11C-hydroxyephedrine and 123I-metaiodobenzylguanidine (123I-MIBG) was examined by PET and planar scintigraphy, respectively. Results: Cardiac uptake of all 3 tracers was inhibited by pretreatment with desipramine. Stable cardiac tracer retention was delineated by dynamic PET in control rabbits for 11C-hydroxyephedrine (washout rate, 0.42% ± 0.57%/min) and 18F-LMI1195 (washout rate, 0.058% ± 0.28%/min). A desipramine chase increased 11C-hydroxyephedrine washout from the heart (2.43% ± 0.15%/min, P < 0.001), whereas 18F-LMI1195 washout was not influenced (0.059% ± 0.11%/min, not statistically significant). Additionally, a desipramine chase did not change the cardiac 123I-MIBG uptake (delayed heart-to-mediastinum ratio, 1.99 ± 0.12 (desipramine chase) vs. 2.05 ± 0.16 (controls), not statistically significant). Conclusion: In vivo norepinephrine transporter (NET) blockade with desipramine confirmed specific neural uptake of 18F-LMI1195, 11C-hydroxyephedrine, and 123I-MIBG in rabbit hearts. 11C-hydroxyephedrine cardiac retention was sensitive to a NET inhibitor chase, indicating a cycle of continuous NET uptake and release at the nerve terminals. In contrast, 18F-LMI1195 and 123IMIBG demonstrated stable storage at the nerve terminal with resistance to a NET inhibitor chase, mimicking physiologic norepinephrine turnover.
AB - 18F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (18F-LMI1195) is a new PET tracer designed for noninvasive assessment of sympathetic innervation of the heart. The 18F label facilitates the imaging advantages of PET over SPECT technology while allowing centralized manufacturing. Highly specific neural uptake of 18F-LMI1195 has previously been established, but the retention kinetics are not yet fully understood. Methods: Healthy New Zealand White rabbits were studied with 18F-LMI1195 using a small-animal PET system. Dynamic 40-min chest scans were started just before intravenous bolus injection of 18F-LMI1195. Imaging was performed under norepinephrine transport inhibition with desipramine pretreatment, a 1.5 mg/kg desipramine chase administered 10 min after tracer injection, and saline treatment of controls. As a reference, cardiac uptake of 11C-hydroxyephedrine and 123I-metaiodobenzylguanidine (123I-MIBG) was examined by PET and planar scintigraphy, respectively. Results: Cardiac uptake of all 3 tracers was inhibited by pretreatment with desipramine. Stable cardiac tracer retention was delineated by dynamic PET in control rabbits for 11C-hydroxyephedrine (washout rate, 0.42% ± 0.57%/min) and 18F-LMI1195 (washout rate, 0.058% ± 0.28%/min). A desipramine chase increased 11C-hydroxyephedrine washout from the heart (2.43% ± 0.15%/min, P < 0.001), whereas 18F-LMI1195 washout was not influenced (0.059% ± 0.11%/min, not statistically significant). Additionally, a desipramine chase did not change the cardiac 123I-MIBG uptake (delayed heart-to-mediastinum ratio, 1.99 ± 0.12 (desipramine chase) vs. 2.05 ± 0.16 (controls), not statistically significant). Conclusion: In vivo norepinephrine transporter (NET) blockade with desipramine confirmed specific neural uptake of 18F-LMI1195, 11C-hydroxyephedrine, and 123I-MIBG in rabbit hearts. 11C-hydroxyephedrine cardiac retention was sensitive to a NET inhibitor chase, indicating a cycle of continuous NET uptake and release at the nerve terminals. In contrast, 18F-LMI1195 and 123IMIBG demonstrated stable storage at the nerve terminal with resistance to a NET inhibitor chase, mimicking physiologic norepinephrine turnover.
KW - C-hydroxyephedrine
KW - F-LMI1195
KW - Imetaiodobenzylguanidine
KW - Positron emission tomography
KW - Sympathetic nerve
UR - http://www.scopus.com/inward/record.url?scp=84940995620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940995620&partnerID=8YFLogxK
U2 - 10.2967/jnumed.115.158493
DO - 10.2967/jnumed.115.158493
M3 - Article
C2 - 26182969
AN - SCOPUS:84940995620
SN - 0161-5505
VL - 56
SP - 1429
EP - 1433
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 9
ER -