TY - JOUR
T1 - Role of charged residues of pharaonis phoborhodopsin (sensory rhodopsin II) in its interaction with the transducer protein
AU - Sudo, Yuki
AU - Iwamoto, Masayuki
AU - Shimono, Kazumi
AU - Kamo, Naoki
PY - 2004/11/2
Y1 - 2004/11/2
N2 - pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, NpSRII) is a receptor for negative phototaxis in Natronomonas (Natronobacterium) pharaonis. In membranes, it forms a 2:2 complex with its transducer protein, pHtrII, which transmits light signals into the cytoplasmic space through protein-protein interactions. We previously found that a specific deprotonated carboxyl of ppR or pHtrII strengthens their binding [Sudo, Y., et al. (2002) Biophys. J. 83, 427-432]. In this study we aim to identify this carboxyl group. Since the D75N mutant has only one photointermediate (ppRo-like) whose existence spans the millisecond time range, the analysis of its decay rate is simple. We prepared various D75N mutants such as D75N/D214N, D75N/K157Q/R162Q/R164Q (D75N/3Gln), D75N/D193N, and D75N/D193E, among which only D75N/D193N did not show pH dependence with regard to the ppRo-like decay rate and KD value for binding, implying that the carboxyl group in question is from Asp-193. The pKa of this group decreased to below 2 when a complex was formed. Therefore, we conclude that Asp-193ppR is connected to the distant transducer-ppR binding surface via hydrogen bonds, thereby modulating its pKa. In addition, we discuss the importance of Arg-162 ppR with respect to the binding activity.
AB - pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, NpSRII) is a receptor for negative phototaxis in Natronomonas (Natronobacterium) pharaonis. In membranes, it forms a 2:2 complex with its transducer protein, pHtrII, which transmits light signals into the cytoplasmic space through protein-protein interactions. We previously found that a specific deprotonated carboxyl of ppR or pHtrII strengthens their binding [Sudo, Y., et al. (2002) Biophys. J. 83, 427-432]. In this study we aim to identify this carboxyl group. Since the D75N mutant has only one photointermediate (ppRo-like) whose existence spans the millisecond time range, the analysis of its decay rate is simple. We prepared various D75N mutants such as D75N/D214N, D75N/K157Q/R162Q/R164Q (D75N/3Gln), D75N/D193N, and D75N/D193E, among which only D75N/D193N did not show pH dependence with regard to the ppRo-like decay rate and KD value for binding, implying that the carboxyl group in question is from Asp-193. The pKa of this group decreased to below 2 when a complex was formed. Therefore, we conclude that Asp-193ppR is connected to the distant transducer-ppR binding surface via hydrogen bonds, thereby modulating its pKa. In addition, we discuss the importance of Arg-162 ppR with respect to the binding activity.
UR - http://www.scopus.com/inward/record.url?scp=7244224726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=7244224726&partnerID=8YFLogxK
U2 - 10.1021/bi048803c
DO - 10.1021/bi048803c
M3 - Article
C2 - 15504037
AN - SCOPUS:7244224726
SN - 0006-2960
VL - 43
SP - 13748
EP - 13754
JO - Biochemistry
JF - Biochemistry
IS - 43
ER -