TY - JOUR
T1 - Role of Kupffer cells in rat liver injury induced by diethyldithiocarbamate
AU - Ishiyama, Hironobu
AU - Ogino, Keiki
AU - Hobara, Tatsuya
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1995/1/13
Y1 - 1995/1/13
N2 - The hepatotoxicity of diethyldithiocarbamate was examined using an in vitro rat liver slice system. Concentration- and time-dependent losses of intracellular K+ and adenosine triphosphate (ATP) levels were observed in rat liver slices incubated with diethyldithiocarbamate at concentrations between 1 and 10 mM over a 4-h period. Histological study revealed perivenous hepatocyte damage. To examine the involvement of Kupffer cells in diethyldithiocarbamate-induced cytotoxicity, rats were injected intravenously with 10 mg/kg of gadolinium chloride (GdCl3) which diminishes Kupffer cell function. Incubation of liver slice preparations from the GdCl3-treated rats with diethyldithiocarbamate showed marked inhibition of the cytotoxicity induced by diethyldithiocarbamate. Moreover, in vitro addition of manganese-superoxide dismutase, a superoxide anion scavenger, or dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, also showed potent inhibition. However, dexamethasone, an inhibitor of tumor necrosis factor, and N,N′-diphenyl-p-phenylenediamine (DPPD), an antioxidant, showed partial prevention of cytotoxicity. Formazan deposits formed as a result of nitro blue tetrazolium reduction were found in Kupffer cells at an early stage after diethyldithiocarbamate treatment, while lipid peroxidation occurred after 3 h. Both pretreatment with GdCl3 in vivo and addition of DMSO in vitro prevented the increase in lipid peroxidation within the liver slice preparations induced by diethyldithiocarbamate. These findings suggest that Kupffer cell function may be involved in the pathogenesis of diethyldithiocarbamate hepatotoxicity.
AB - The hepatotoxicity of diethyldithiocarbamate was examined using an in vitro rat liver slice system. Concentration- and time-dependent losses of intracellular K+ and adenosine triphosphate (ATP) levels were observed in rat liver slices incubated with diethyldithiocarbamate at concentrations between 1 and 10 mM over a 4-h period. Histological study revealed perivenous hepatocyte damage. To examine the involvement of Kupffer cells in diethyldithiocarbamate-induced cytotoxicity, rats were injected intravenously with 10 mg/kg of gadolinium chloride (GdCl3) which diminishes Kupffer cell function. Incubation of liver slice preparations from the GdCl3-treated rats with diethyldithiocarbamate showed marked inhibition of the cytotoxicity induced by diethyldithiocarbamate. Moreover, in vitro addition of manganese-superoxide dismutase, a superoxide anion scavenger, or dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, also showed potent inhibition. However, dexamethasone, an inhibitor of tumor necrosis factor, and N,N′-diphenyl-p-phenylenediamine (DPPD), an antioxidant, showed partial prevention of cytotoxicity. Formazan deposits formed as a result of nitro blue tetrazolium reduction were found in Kupffer cells at an early stage after diethyldithiocarbamate treatment, while lipid peroxidation occurred after 3 h. Both pretreatment with GdCl3 in vivo and addition of DMSO in vitro prevented the increase in lipid peroxidation within the liver slice preparations induced by diethyldithiocarbamate. These findings suggest that Kupffer cell function may be involved in the pathogenesis of diethyldithiocarbamate hepatotoxicity.
KW - Diethyldithiocarbamate
KW - Hepatotoxicity
KW - Kupffer cells
KW - Liver slice preparation
UR - http://www.scopus.com/inward/record.url?scp=0028858833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028858833&partnerID=8YFLogxK
U2 - 10.1016/0926-6917(95)90005-5
DO - 10.1016/0926-6917(95)90005-5
M3 - Article
C2 - 7720785
AN - SCOPUS:0028858833
SN - 1382-6689
VL - 292
SP - 135
EP - 141
JO - Environmental Toxicology and Pharmacology
JF - Environmental Toxicology and Pharmacology
IS - 2
ER -