Role of proteoglycans in renal development

Brigitte Lelongt, Hirofumi Makino, Tomasz M. Dalecki, Yashpal S. Kanwar

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The role of proteoglycans (PGs) in morphogenesis was investigated. Fetal kidneys were obtained from 13-day-old mouse embryos and maintained for 7 days in culture. The biosynthesis of PGs was perturbed by addition of p-nitrophenyl-β-d-xylopyranoside in the culture medium. The kidneys were processed for morphological and biochemical studies. The morphological studies included staining of tissues with anti-basement membrane antibodies and ruthenium red. [35S]sulfate was used as the precursor product for biosynthetic and autoradiographic studies. The kidneys treated with xyloside had loose mesenchyme, inhibition of ureteric bud branching, diminution in the population of developing nephron elements, decreased immunofluorescence with anti-proteoglycan antibodies and staining with ruthenium red, and a reduced [35S]sulfate incorporation into poorly organized extracellular matrices. The biochemical studies included characterization of PGs/glycosaminoglycans (GAGs) by Sepharose CL-4B, -6B, and DEAE-Sephacel chromatographies and cellulose acetate electrophoresis. Under the influence of xyloside, the total radioactivities decreased 2 to 4-fold in tissues and increased 18 to 42-fold in media fractions. A reduction in the size of macromolecular form of PGs, i.e., from MW ∼2.5 × 106 to ∼2.5 × 104, was noted. The PGs/GAGs synthesized were mainly made up of heparan sulfate and small amounts of chondroitin sulfate. They eluted at a lower salt concentration as compared to the controls. A similar diminution in the size of media PGs, i.e., from MW ∼1.8 × 105 to ∼2.8 × 104, was observed. Additional studies with [3H]xyloside indicated that the chains initiated on xyloside residues were similar in size and composition to GAG-chains. These findings indicate that a perturbance in the biosynthesis of PGs/GAGs leads to abnormalities in renal organogenesis.

Original languageEnglish
Pages (from-to)256-276
Number of pages21
JournalDevelopmental Biology
Issue number2
Publication statusPublished - Aug 1988
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology


Dive into the research topics of 'Role of proteoglycans in renal development'. Together they form a unique fingerprint.

Cite this