Roles of the Flexible Primary Coordination Sphere of the Mn4CaOxCluster: What Are the Immediate Decay Products of the S3State?

Hiroshi Isobe, Mitsuo Shoji, Takayoshi Suzuki, Jian-Ren Shen, Kizashi Yamaguchi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S2to S3transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S2to S3transition and in the recovery of the S2state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g ∼5 and g ∼3 signals obtained after near-infrared (NIR) excitation of the S3state at 4 K and a g ∼5 only signal produced after prolonged incubation of the S3state at 77 K can be best explained as originating from water-bound S2clusters (Stotal= 7/2) under a S3ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (Stotal= 6) and hydroxo-oxo (Stotal= 3) species in the S3state.

Original languageEnglish
Pages (from-to)7212-7228
Number of pages17
JournalJournal of Physical Chemistry B
Volume126
Issue number38
DOIs
Publication statusPublished - Sept 29 2022

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Roles of the Flexible Primary Coordination Sphere of the Mn4CaOxCluster: What Are the Immediate Decay Products of the S3State?'. Together they form a unique fingerprint.

Cite this