Abstract
Ferulate 5-hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O-methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT-down-regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down-regulation of F5H in COMT-RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5-OH G units. Conversely, overexpression of F5H in COMT-RNAi transgenic plants reduced G units and increased 5-OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down-regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up-regulation and down-regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.
Original language | English |
---|---|
Pages (from-to) | 836-845 |
Number of pages | 10 |
Journal | Plant Biotechnology Journal |
Volume | 17 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2019 |
Keywords
- Panicum virgatum L.
- caffeic acid O-methyltransferase
- coordinated effects
- ferulate 5-hydroxylase
- lignin biosynthesis
- switchgrass
ASJC Scopus subject areas
- Biotechnology
- Agronomy and Crop Science
- Plant Science