Small-animal PET imaging of isolated perfused rat heart

Tomohiko Yamane, Min Jae Park, Dominik Richter, Stephan G. Nekolla, Mehrbod S. Javadi, Constantin Lapa, Samuel Samnick, Andreas K. Buck, Ken Herrmann, Takahiro Higuchi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


The assessment of myocardial radiotracer kinetics, including cardiac extraction fraction and washout, requires the study of isolated perfused hearts to avoid analytic error due to tracer recirculation and systemic metabolites. Analysis of the isolated perfused rat heart by a high-resolution small-animal PET system may offer both reliable evaluation of cardiac tracer kinetics and tomographic images. Methods: An isolated perfused heart system was modified to accommodate the small PET gantry bore size. Isolated rat hearts were perfused via the Langendorff method under a constant flow of Krebs-Henseleit buffer containing 18F-FDG with a rate of 5 mL/min and placed in the field of view of the commercially available small-animal PET system. Dynamic PET imaging was then performed, with 18F-FDG uptake in the isolated perfused heart verified by g counter measurements. Additionally, a rat heart of myocardial infarction was also studied in this system with static PET imaging. Results: Dynamic PET acquisition of the isolated heart under constant 18F-FDG infusion demonstrated continuous increase of activity in the heart. Correlation between cardiac activity (MBq) measured with the PET system and measurements made with the g counter were excellent (R2 5 0.98, P > 0.001, n 5 10). Tracer input rate (MBq/min) was also well correlated with cardiac tracer uptake rate (MBq/min) (R2 5 0.87, P > 0.001, n 5 12). PET imaging of the heart with myocardial infarction showed a clear tracer uptake defect corresponding to the location of scar tissue identified by autoradiography and histology. Conclusion: Combining the Langendorff method of isolated rat heart perfusion with high-resolution small-animal PET allows for the reliable quantification of myocardial tracer kinetics. This novel assay is readily adapted to available small-animal PET systems and may be useful for understanding myocardial PET tracer kinetics.

Original languageEnglish
Pages (from-to)495-499
Number of pages5
JournalJournal of Nuclear Medicine
Issue number3
Publication statusPublished - Mar 1 2014
Externally publishedYes


  • Isolated perfused heart
  • Myocardial infarction
  • PET
  • Rat heart

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Small-animal PET imaging of isolated perfused rat heart'. Together they form a unique fingerprint.

Cite this