TY - JOUR
T1 - Smith equivalent Aut(A6)-Representations are isomorphic
AU - Morimoto, Masaharu
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2008/10
Y1 - 2008/10
N2 - Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawalowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if aG, the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut (A6), aG =2 any two Smith equivalent real G-modules are isomorphic.
AB - Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawalowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if aG, the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut (A6), aG =2 any two Smith equivalent real G-modules are isomorphic.
UR - http://www.scopus.com/inward/record.url?scp=77950661391&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950661391&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-08-08891-6
DO - 10.1090/S0002-9939-08-08891-6
M3 - Article
AN - SCOPUS:77950661391
SN - 0002-9939
VL - 136
SP - 3683
EP - 3688
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 10
ER -