Smith equivalent Aut(A6)-Representations are isomorphic

Masaharu Morimoto

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawalowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if aG, the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut (A6), aG =2 any two Smith equivalent real G-modules are isomorphic.

Original languageEnglish
Pages (from-to)3683-3688
Number of pages6
JournalProceedings of the American Mathematical Society
Volume136
Issue number10
DOIs
Publication statusPublished - Oct 2008

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Smith equivalent Aut(A6)-Representations are isomorphic'. Together they form a unique fingerprint.

Cite this