Abstract
We give a mathematical foundation for, and numerical demonstration of, the existence of mean curvature 1 surfaces of genus 1 with either two elliptic ends or two hyperbolic ends in de Sitter 3-space. An end of a mean curvature 1 surface is an 'elliptic end' (respectively a 'hyperbolic end') if the monodromy matrix at the end is diagonalizable with eigenvalues in the unit circle (respectively in the reals). Although the existence of the surfaces is numerical, the types of ends are mathematically determined.
Original language | English |
---|---|
Pages (from-to) | 1-20 |
Number of pages | 20 |
Journal | Kyushu Journal of Mathematics |
Volume | 61 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jun 7 2007 |
Keywords
- De Sitter 3-space
- Genus 1 surface
- Spacelike constant mean curvature 1 surface
ASJC Scopus subject areas
- Mathematics(all)