Abstract
In this study, we investigate the process of strain relaxation and spinodal decomposition in TiO2-VO2 films on TiO2(100) substrates. Herein, the film composition was adjusted to Ti0.2V0.8O2 for the relaxation of the in-plane tensile c-axis strain in the films. A 115 nm thick Ti0.2V0.8O2 solid-solution film is epitaxially grown on a rutile-type TiO2(100) substrate using a pulsed laser deposition technique, and is annealed inside the spinodal region. Reciprocal space mapping measurements show that the in-plane tensile c-axis strain is almost fully relaxed in the solid-solution film. Scanning transmission electron microscopy (STEM) observation results reveal that the annealed film causes spinodal decomposition along the c-axis direction, forming vertically aligned multilayer structures. The STEM observations also suggest the presence of interfacial misfit dislocations along the c-axis, indicating the generation of plastic strain relaxation along the c-axis in the film. Composition analysis reveals that the Ti-V interdiffusion between the film and substrate is considerably suppressed. The overall results of this study show that the composition adjustment to Ti0.2V0.8O2 is effective for strain relaxation along the in-plane c-axis and occurrence of spinodal decomposition with reduced Ti-V interdiffusion in the TiO2-VO2 films on TiO2(100). Our study helps establish a method for the formation of nanostructures via spinodal decomposition in the TiO2-VO2 films.
Original language | English |
---|---|
Article number | 139210 |
Journal | Thin Solid Films |
Volume | 751 |
DOIs | |
Publication status | Published - Jun 1 2022 |
Keywords
- Film composition
- Nanostructure
- Spinodal decomposition
- Strain relaxation
- Titanium dioxide
- Vanadium dioxide
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry