Structural basis for the absence of lowenergy chlorophylls in a photosystem I trimer from Gloeobacter violaceus

Koji Kato, Tasuku Hamaguchi, Ryo Nagao, Keisuke Kawakami, Yoshifumi Ueno, Takehiro Suzuki, Hiroko Uchida, Akio Murakami, Yoshiki Nakajima, Makio Yokono, Seiji Akimoto, Naoshi Dohmae, Koji Yonekura, Jian Ren Shen

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in lightharvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of lowenergy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.

Original languageEnglish
Article numbere73990
Publication statusPublished - Apr 2022

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)


Dive into the research topics of 'Structural basis for the absence of lowenergy chlorophylls in a photosystem I trimer from Gloeobacter violaceus'. Together they form a unique fingerprint.

Cite this