TY - JOUR
T1 - Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
AU - Luo, Jun
AU - Yang, Jie
AU - Maeda, S.
AU - Li, Zheng
AU - Zheng, Guo Qing
N1 - Funding Information:
Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377 and 11634015), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). J. Y. is supported by the Youth Innovation Promotion Association of CAS.
Funding Information:
*Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377 and 11634015), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). J. Y. is supported by the Youth Innovation Promotion Association of CAS. †Corresponding author. E-mail: yangjie@iphy.ac.cn ‡Corresponding author. E-mail: gqzheng123@gmail.com
Publisher Copyright:
© 2018 Chinese Physical Society and IOP Publishing Ltd.
PY - 2018
Y1 - 2018
N2 - The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Sn13 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T∗ that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1) divided by temperature (T), 1/T1T and the Knight shift K increase with decreasing T down to T∗, but start to decrease below T∗, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-Δ/kBT) with a large gap Δ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
AB - The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Sn13 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T∗ that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1) divided by temperature (T), 1/T1T and the Knight shift K increase with decreasing T down to T∗, but start to decrease below T∗, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-Δ/kBT) with a large gap Δ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
KW - antiferromagnetic fluctuation
KW - nuclear magnetic resonance
KW - phase diagram
KW - structural phase transition
UR - http://www.scopus.com/inward/record.url?scp=85047376025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047376025&partnerID=8YFLogxK
U2 - 10.1088/1674-1056/27/7/077401
DO - 10.1088/1674-1056/27/7/077401
M3 - Article
AN - SCOPUS:85047376025
SN - 1674-1056
VL - 27
JO - Chinese Physics B
JF - Chinese Physics B
IS - 7
M1 - 077401
ER -