Abstract
In design and manufacture of a compact NMR (nuclear magnetic resonance) magnet which consists of a stack of high temperature superconducting (HTS) bulk annuli, spatial homogeneity and temporal stability of trapped magnetic fields are key issues. This paper presents a study on optimized configuration of stacked HTS bulk annuli for the compact NMR application. A three-stack bulk magnet was designed and tested at two different temperatures of 20 and 77 K, and two different background fields of 3 and 5 T. The test results were compared with analytic results to verify the validity of the calculation. Then, various optimized patterns were investigated numerically to find out an optimized stack pattern of HTS bulk annuli in a given condition. The results prove that with the proposed optimized method trapped field strength as well as its homogeneity of a bulk-annulus stack can be improved.
Original language | English |
---|---|
Article number | 5629379 |
Pages (from-to) | 2080-2083 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 21 |
Issue number | 3 PART 2 |
DOIs | |
Publication status | Published - Jun 2011 |
Keywords
- Compact NMR
- HTS bulk annuli
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering