Abstract
In order to prevent degradation of diamond surfaces in contact with ferrous metals, a TiN thin film of a few tens of nm thick was synthesized on a diamond surface with a Ti thin buffer layer of approximately 10 nm by a new atom beam method. A diamond surface was simultaneously exposed to pulsed Ti arc plasma and hyperthermal neutral N atom beam generated from an arc plasma gun (APG) and a laser breakdown-type atom beam generator, respectively. Frictional experiment of the TiN thin film was conducted by an in situ scanning electron microscopic (SEM) tribometer using a 1 mm diameter SUS304 pin with an applied force of 0.24 N. The TiN film had a relative high friction coefficient (0.4), but this film showed no notable degradation and relative steady friction. In addition, a TiN coated diamond tip by the new atom beam method showed less wear than that of non-coated diamond tips by three times in the scratching tests of iron with using an atomic force microscope (AFM).
Original language | English |
---|---|
Pages (from-to) | 3002-3006 |
Number of pages | 5 |
Journal | Applied Surface Science |
Volume | 258 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jan 15 2012 |
Keywords
- Arc plasma deposition
- Diamond surface degradation
- Hyperthermal atom beam
- TiN
ASJC Scopus subject areas
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films