TY - JOUR
T1 - Targeting VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T cells and CD8+ T cells in the tumor microenvironment
AU - Tada, Yasuko
AU - Togashi, Yosuke
AU - Kotani, Daisuke
AU - Kuwata, Takeshi
AU - Sato, Eichi
AU - Kawazoe, Akihito
AU - Doi, Toshihiko
AU - Wada, Hisashi
AU - Nishikawa, Hiroyoshi
AU - Shitara, Kohei
N1 - Funding Information:
This study was supported by Grants-in-Aid for Scientific Research [S grant no. 17H06162 (HN), Challenging Exploratory Research grant no. 16 K15551 (HN), Young Scientists no. 17 J09900 (Y. Togashi), and JSPS Research fellow no. 17 K18388 (Y. Togashi)] from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Project for Cancer Research by Therapeutic Evolution (P-CREATE) from Japan Agency for Medical Research and Development (AMED) (no. 16cm0106301h0002, HN), by the National Cancer Center Research and Development Fund (no. 28-A-7, HN), by the Naito Foundation (HN and Y. Togashi), by the Takeda Foundation (Y. Togashi), and by the SGH Foundation (Y. Togashi). This study was executed in part as a research program supported by Eli Lilly Japan KK.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/10/11
Y1 - 2018/10/11
N2 - Background: Several studies have established a correlation between the VEGF-VEGFR2 axis and an immunosuppressive microenvironment; this immunosuppression can be overcome by anti-angiogenic reagents, such as ramucirumab (RAM). However, little is known about the immunological impact of anti-angiogenic reagents within the tumor microenvironment in human clinical samples. This study aimed at investigating the effects of RAM on the tumor microenvironmental immune status in human cancers. Methods: We prospectively enrolled 20 patients with advanced gastric cancer (GC) who received RAM-containing chemotherapy. We obtained paired samples from peripheral blood mononuclear cells (PBMCs) and tumor-infiltrating lymphocytes (TILs) in primary tumors both pre- and post-RAM therapy to assess immune profiles by immunohistochemistry and flow cytometry. Results: Within the tumor microenvironment, both PD-L1 expression and CD8+ T-cell infiltration increased after RAM-containing therapies. In addition, CD45RA-FOXP3highCD4+ cells (effector regulatory T cells [eTreg cells]) and PD-1 expression by CD8+ T cells were significantly reduced in TILs compared with PBMCs after RAM-containing therapies. Patients with partial response and longer progression-free survival had significantly higher pre-treatment eTreg frequencies in TILs than those with progressive disease. In in vitro analysis, VEGFR2 was highly expressed by eTreg cells. Further, VEGFA promoted VEGFR2+ eTreg cell proliferation, and this effect could be inhibited by RAM. Conclusions: This study suggests that the frequency of eTreg cells in TILs could be a biomarker for stratifying clinical responses to RAM-containing therapies. Further, we propose that RAM may be employed as an immuno-modulator in combination with immune checkpoint blockade.
AB - Background: Several studies have established a correlation between the VEGF-VEGFR2 axis and an immunosuppressive microenvironment; this immunosuppression can be overcome by anti-angiogenic reagents, such as ramucirumab (RAM). However, little is known about the immunological impact of anti-angiogenic reagents within the tumor microenvironment in human clinical samples. This study aimed at investigating the effects of RAM on the tumor microenvironmental immune status in human cancers. Methods: We prospectively enrolled 20 patients with advanced gastric cancer (GC) who received RAM-containing chemotherapy. We obtained paired samples from peripheral blood mononuclear cells (PBMCs) and tumor-infiltrating lymphocytes (TILs) in primary tumors both pre- and post-RAM therapy to assess immune profiles by immunohistochemistry and flow cytometry. Results: Within the tumor microenvironment, both PD-L1 expression and CD8+ T-cell infiltration increased after RAM-containing therapies. In addition, CD45RA-FOXP3highCD4+ cells (effector regulatory T cells [eTreg cells]) and PD-1 expression by CD8+ T cells were significantly reduced in TILs compared with PBMCs after RAM-containing therapies. Patients with partial response and longer progression-free survival had significantly higher pre-treatment eTreg frequencies in TILs than those with progressive disease. In in vitro analysis, VEGFR2 was highly expressed by eTreg cells. Further, VEGFA promoted VEGFR2+ eTreg cell proliferation, and this effect could be inhibited by RAM. Conclusions: This study suggests that the frequency of eTreg cells in TILs could be a biomarker for stratifying clinical responses to RAM-containing therapies. Further, we propose that RAM may be employed as an immuno-modulator in combination with immune checkpoint blockade.
KW - Gastric cancer
KW - PD-1
KW - Ramucirumab
KW - Regulatory T cells
KW - VEGFR2
UR - http://www.scopus.com/inward/record.url?scp=85054782776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054782776&partnerID=8YFLogxK
U2 - 10.1186/s40425-018-0403-1
DO - 10.1186/s40425-018-0403-1
M3 - Article
C2 - 30314524
AN - SCOPUS:85054782776
SN - 2051-1426
VL - 6
JO - Journal for immunotherapy of cancer
JF - Journal for immunotherapy of cancer
IS - 1
M1 - 106
ER -