TY - JOUR
T1 - The effect of pressure upon hydrogen bonding in chlorite
T2 - A Raman spectroscopic study of clinochlore to 26.5 GPa
AU - Kleppe, Annette K.
AU - Jephcoat, Andrew P.
AU - Welch, Mark D.
PY - 2003/4
Y1 - 2003/4
N2 - The effect of pressure upon hydrogen bonding in synthetic end-member clinochlore, (Mg5Al)(Si3Al)10(OH 8, has been studied in situ by high-pressure micro-Raman spectroscopy in a moissanite-anvil cell to 26.5 GPa at 300 K. The ambient spectrum consists of three OH-stretching bands between 3400 and 3650 cm-1, attributed to the hydrogen-bonded interlayer OH, and a narrow band at 3679 cm-1 that is assigned to the non-hydrogen-bonded OH groups of the talc-like 2:1 layer. The pressure dependence of the OH modes is linear up to 6 GPa. Near 9 GPa a major discontinuity occurs in the pressure dependence of the interlayer OH-stretching modes. It involves frequency increases >100 cm-1 that indicate major changes in hydrogen bonding. The OH mode of the 2:1 layer does not show discontinuous behavior at 9 GPa. A further discontinuity occurs at ∼16 GPa. This discontinuity affects both interlayer and 2:1 OH, and is likely to be associated with a change in the overall compression mechanism of clinochlore. The spectroscopic behavior is a completely reversible function of pressure. Predictions based upon recent high-pressure diffraction studies of hydrogen bonding and compression of clinochlore suggest that the 9 GPa transition is associated with attainment of an O2-O2--contact distance of 2.7 Å.
AB - The effect of pressure upon hydrogen bonding in synthetic end-member clinochlore, (Mg5Al)(Si3Al)10(OH 8, has been studied in situ by high-pressure micro-Raman spectroscopy in a moissanite-anvil cell to 26.5 GPa at 300 K. The ambient spectrum consists of three OH-stretching bands between 3400 and 3650 cm-1, attributed to the hydrogen-bonded interlayer OH, and a narrow band at 3679 cm-1 that is assigned to the non-hydrogen-bonded OH groups of the talc-like 2:1 layer. The pressure dependence of the OH modes is linear up to 6 GPa. Near 9 GPa a major discontinuity occurs in the pressure dependence of the interlayer OH-stretching modes. It involves frequency increases >100 cm-1 that indicate major changes in hydrogen bonding. The OH mode of the 2:1 layer does not show discontinuous behavior at 9 GPa. A further discontinuity occurs at ∼16 GPa. This discontinuity affects both interlayer and 2:1 OH, and is likely to be associated with a change in the overall compression mechanism of clinochlore. The spectroscopic behavior is a completely reversible function of pressure. Predictions based upon recent high-pressure diffraction studies of hydrogen bonding and compression of clinochlore suggest that the 9 GPa transition is associated with attainment of an O2-O2--contact distance of 2.7 Å.
UR - http://www.scopus.com/inward/record.url?scp=0038025940&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038025940&partnerID=8YFLogxK
U2 - 10.2138/am-2003-0410
DO - 10.2138/am-2003-0410
M3 - Article
AN - SCOPUS:0038025940
SN - 0003-004X
VL - 88
SP - 567
EP - 573
JO - American Mineralogist
JF - American Mineralogist
IS - 4
ER -