Therapeutic strategy of targeting astrocytes for neuroprotection in parkinson’s disease

Research output: Contribution to journalReview articlepeer-review

16 Citations (Scopus)


Parkinson’s disease (PD) is one of common neurodegenerative diseases, which shows motor symptoms including tremor, bradykinesia, rigidity and postural instability. It also involves non-motor symptoms such as cognitive impairment, mental manifestation, autonomic disorder and sensory disturbance. Although treatments to improve the motor disability in PD are being assessed at present, the main challenge remains that is the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find approaches that can inhibit the progression of dopaminergic neurodegeneration. Astrocytes are known to play an important role in the maintenance of the neuronal environment and exert neuroprotective effects. Additionally, astrocyte dysfunction increases the susceptibility of neurons to cytotoxicity. We have demonstrated neuroprotective approaches in parkinsonian models in various studies targeting astrocytes. In this article, we summarize the neuroprotective function of astrocytes in the brain, involvement of astrocyte dysfunction in neurodegeneration, and experimental approaches to dopaminergic neuroprotection. We review findings reported in several papers including our own studies. We also address target molecules and pivotal pathways in astrocytes for dopaminergic neuroprotection. The review discusses new promising therapeutic strategies to prevent dopaminergic neurodegeneration in PD.

Original languageEnglish
Pages (from-to)4936-4947
Number of pages12
JournalCurrent Pharmaceutical Design
Issue number33
Publication statusPublished - 2017


  • 5-hT1A receptor
  • Antioxidative molecules
  • Astrocyte
  • Dopaminergic neuron
  • Neuroprotection
  • Nrf2
  • Parkinson’s disease
  • XCT

ASJC Scopus subject areas

  • Pharmacology
  • Drug Discovery


Dive into the research topics of 'Therapeutic strategy of targeting astrocytes for neuroprotection in parkinson’s disease'. Together they form a unique fingerprint.

Cite this