Abstract
The effect of curvature and torsion on the flow in a helical pipe of circular cross-section is studied numerically by the spectral method. The calculations are carried out for 0 ≤ δ ≤ 0.6, 0 ≤ β0 ≤ 1.4 and 500 ≤ Dn≤ 2000, where δ is the non-dimensional curvature,β0 the ratio of torsion to square root of curvature, and Dn the Dean number. The results obtained indicate large effects of torsion on the flow: The conventional two-vortex secondary flow is distorted to become almost one single recirculating cell when β0 {greater-than or approximate} 0.8. The flux through the pipe at the given Dean number and curvature first decreases from that of the toroidally curved pipe as β0 increases from zero, reaches a minimum at β0 ≈ 0.8, and then increases to values larger than that of the toroidally curved pipe. The minimum value decreases as ° increases.
Original language | English |
---|---|
Pages (from-to) | 259-273 |
Number of pages | 15 |
Journal | Fluid Dynamics Research |
Volume | 14 |
Issue number | 5 |
DOIs | |
Publication status | Published - Nov 1994 |
ASJC Scopus subject areas
- Mechanical Engineering
- Physics and Astronomy(all)
- Fluid Flow and Transfer Processes